Previous |  Up |  Next

Article

Title: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem (English)
Author: Kaplický, Petr
Author: Málek, Josef
Author: Stará, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 681-695
.
Category: math
.
Summary: We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic. (English)
Keyword: non-Newtonian fluids
Keyword: shear dependent viscosity
Keyword: regularity
Keyword: Hölder continuity of gradients
MSC: 35D10
MSC: 35J65
MSC: 35Q35
MSC: 76A05
MSC: 76F10
idZBL: Zbl 0946.76006
idMR: MR1603694
.
Date available: 2009-01-08T18:37:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118966
.
Reference: [1] Amrouche Ch., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension.Czechoslovak Math. J. 44 (1994), 109-141. Zbl 0823.35140, MR 1257940
Reference: [2] Bojarski B.V.: Generalized solutions to first order systems of elliptic type with discontinuous coefficients (in Russian).Mat. Sbornik 43 (1957), 451-503. MR 0106324
Reference: [3] Frehse J., Málek J., Steinhauer M.: An Existence Result for Fluids with Shear Dependent Viscosity-Steady Flows.accepted to the Proceedings of the Second World Congress of Nonlinear Analysts.
Reference: [4] Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires.Dunod Paris (1969). Zbl 0189.40603, MR 0259693
Reference: [5] Málek J., Nečas J., Růžička M.: On weak solutions to a class of non-Newtonian Incompressible fluids in bounded three-dimensional domains. The case $p\ge 2$.submitted to {Advances in Differential Equations}, Preprint SFB 256, No. 481 (1996). MR 1389407
Reference: [6] Málek J., Rajagopal K.R., Růžička M.: Existence and regularity of solutions and stability of the rest state for fluids with shear dependent viscosity.Mathematical Models and Methods in Applied Sciences 6 (1995), 789-812. MR 1348587
Reference: [7] Meyers N.G.: On $L_p$ estimates for the gradient of solutions of second order elliptic divergence equations.Annali della Scuola Normale Superiore di Pisa 17 (1963), 189-206. MR 0159110
Reference: [8] Nečas J.: Sur les normes équivalentes dans $W^{k,p}(Ømega)$ et sur la coercivité des formes formellement positives.Les Presses de l'Université de Montréal, Montréal, 1996, pp. 102-128.
Reference: [9] Nečas J.: Sur la régularité des solutions faibles des équations elliptiques non linéaires.Comment. Math. Univ. Carolinae 9.3 (1968), 365-413. MR 0241804
Reference: [10] Nečas J.: Sur la régularité des solutions variationnelles des équations elliptiques nonlinéaires d'ordre $2k$ en deux dimensions.Annali della Scuola Normale Superiore di Pisa XXI Fasc. III (1967), 427-457. MR 0226467
Reference: [11] Stará J.: Regularity results for non-linear elliptic systems in two dimensions.Annali della Scuola Normale Superiore di Pisa XXV Fasc. I (1971), 163-190. MR 0299935
Reference: [12] Temam R.: Navier-Stokes Equations and Nonlinear Functional Analysis.Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania (1995), second edition. Zbl 0833.35110
Reference: [13] Ziemer W.P.: Weakly Differentiable Functions.Springer-Verlag New York Inc. (1989). Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_7.pdf 256.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo