Title:
|
On non-homogeneous viscous incompressible fluids. Existence of regular solutions (English) |
Author:
|
Lemoine, Jérôme |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
4 |
Year:
|
1997 |
Pages:
|
697-715 |
. |
Category:
|
math |
. |
Summary:
|
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when $\Omega$ is smooth enough, there exists a local strong regular solution (which is global for small regular data). (English) |
Keyword:
|
Navier-Stokes equations |
MSC:
|
35B65 |
MSC:
|
35Q30 |
MSC:
|
76D05 |
idZBL:
|
Zbl 0940.35153 |
idMR:
|
MR1603698 |
. |
Date available:
|
2009-01-08T18:37:26Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118967 |
. |
Reference:
|
[1] Antonzev S.A., Kajikov A.V.: Mathematical study of flows of nonhomogeneous fluids (in Russian).Lectures at the University of Novosibirsk, Novosibirsk, U.S.S.R., 1973. |
Reference:
|
[2] Dunford N., Schwartz J.T.: Linear Operators.Interscience, 1958. Zbl 0635.47003 |
Reference:
|
[3] Fernández-Cara E., Guillén F.: Some new results for the variable density Navier-Stokes equations.Ann. Fac. Sci. Toulouse Math., Vol II, no. 2, 1993. |
Reference:
|
[4] Kabbaj M.: Thesis.Blaise Pascal University, France, 1994. |
Reference:
|
[5] Ladyzenskaya O.A., Solonnikov V.A.: Unique solvability of an initial-and boundary-value problem for viscous incompressible nonhomogeneous fluids.J. Soviet. Math. 9 (1978), 697-749. |
Reference:
|
[6] Lemoine J.: Thesis.Blaise Pascal University, France, 1995. |
Reference:
|
[7] Lions J.L.: On Some Problems Connected with Navier-Stokes Equations in Nonlinear Evolution Equations.M.C. Crandall, ed., Academic Press, New York, 1978. MR 0513812 |
Reference:
|
[8] Lions P.L.: Mathematical Topics in Fluids Mechanics, Vol. I, Incompressible Models.Clarendon Press, Oxford, 1996. MR 1422251 |
Reference:
|
[9] Simon J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. IV, Vol. CXLVI, (1987), 65-96. MR 0916688 |
Reference:
|
[10] Simon J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure.SIAM J. Math. Anal. 21 5 (1990), 1093-1117. Zbl 0702.76039, MR 1062395 |
Reference:
|
[11] Solonnikov V.A.: Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid.J. Soviet. Math. 14 2 (1980), 1120-1133. Zbl 0451.35092 |
Reference:
|
[12] Temam R.: Navier-Stokes Equations.North-Holland (second edition), 1979. Zbl 1157.35333 |
Reference:
|
[13] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland Publishing Company, 1978. Zbl 0830.46028, MR 0503903 |
. |