Previous |  Up |  Next

Article

Title: Combined finite element -- finite volume method (convergence analysis) (English)
Author: Lukáčová-Medviďová, Mária
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 717-741
.
Category: math
.
Summary: We present an efficient numerical method for solving viscous compressible fluid flows. The basic idea is to combine finite volume and finite element methods in an appropriate way. Thus nonlinear convective terms are discretized by the finite volume method over a finite volume mesh dual to a triangular grid. Diffusion terms are discretized by the conforming piecewise linear finite element method. In the paper we study theoretical properties of this scheme for the scalar nonlinear convection-diffusion equation. We prove the convergence of the numerical solution to the exact solution. (English)
Keyword: compressible Navier-Stokes equations
Keyword: nonlinear convection-diffusion equation
Keyword: finite volume schemes
Keyword: finite element method
Keyword: numerical integration
Keyword: apriori estimates
Keyword: convergence of the scheme
MSC: 35K60
MSC: 65M12
MSC: 65M60
MSC: 76M10
MSC: 76M25
MSC: 76N10
idZBL: Zbl 0938.65111
idMR: MR1603702
.
Date available: 2009-01-08T18:37:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118968
.
Reference: [1] Adam D., Felgenhauer A., Roos H.-G., Stynes M.: A nonconforming finite element method for a singularly perturbed boundary value problem.Computing 54 1 (1995), 1-25. Zbl 0813.65105, MR 1314953
Reference: [2] Bardos C., LeRoux A.Y., Nedelec J.C.: First order quasilinear equations with boundary conditions.Comm. in Part. Diff. Equa. 4 (9) (1979), 1017-1034. MR 0542510
Reference: [3] Berger H., Feistauer M.: Analysis of the finite element variational crimes in the numerical approximation of transonic flow.Math. Comput. 61 204 (1993), 493-521. Zbl 0786.76051, MR 1192967
Reference: [4] Ciarlet P.G.: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1979. Zbl 0547.65072, MR 0520174
Reference: [5] Feistauer M.: Mathematical Methods in Fluid Dynamics.Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001, MR 1266627
Reference: [6] Feistauer M., Felcman J., Dolejší V.: Adaptive finite volume method for the numerical solution of the compressible Euler equations.in: S. Wagner, E.H. Hirschel, J. Périaux and R. Piva, Eds., {Computational Fluid Dynamics 94}, Vol. 2, Proc. of the Second European CFD Conference (John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1994), pp. 894-901.
Reference: [7] Feistauer M., Felcman J., Lukáčová-Medviďová M.: Combined finite element-finite volume solution of compressible flow.Journal of Comput. and Appl. Math. 63 (1995), 179-199. MR 1365559
Reference: [8] Feistauer M., Felcman J., Lukáčová-Medviďová M.: On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems.Num. Methods for Part. Diff. Eqs. 13 (1997), 1-28. MR 1436613
Reference: [9] Feistauer M., Knobloch P.: Operator splitting method for compressible Euler and NavierStokes equations.Proc. of Internat. Workshop on Numerical Methods for the Navier-Stokes Equations, Heidelberg 1993, {Notes on Numerical Fluid Mechanics}, Vieweg, BraunschweigWiesbaden.
Reference: [10] Felcman J.: Finite volume solution of inviscid compressible fluid flow.ZAMM 71 (1991), 665-668.
Reference: [11] Göhner U., Warnecke G.: A shock indicator for adaptive transonic flow computations.Num. Math. 66 (1994), 423-448. MR 1254397
Reference: [12] Göhner U., Warnecke G.: A second order finite difference error indicator for adaptive transonic flow computations.Num. Math. 70 (1995), 129-161. MR 1324735
Reference: [13] Ikeda T.: Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena.Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1983. Zbl 0508.65049, MR 0683102
Reference: [14] Lukáčová-Medviďová M.: Numerical Solution of Compressible Flow.PhD Thesis, Fac. of Math. and Physics, Charles Univ., Prague, 1994.
Reference: [15] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure Valued Solutions to Evolutionary Partial Differential Equations.Applied Mathematics and Mathematical Computation 13, London, Chapman & Hall, 1996.
Reference: [16] Ohmori K., Ushijima T.: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations.RAIRO Numer. Anal. 18 (1984), 309-322. Zbl 0586.65080, MR 0751761
Reference: [17] Risch U.: An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty$-norm.M$^{2}$AN 24 (1990), 235-264. MR 1052149
Reference: [18] Schieweck F., Tobiska L.: A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation.M$^{2}$AN 23 (1989), 627-647. Zbl 0681.76032, MR 1025076
Reference: [19] Temam R.: Navier-Stokes Equations.North-Holland, Amsterdam-New York-Oxford, 1977. Zbl 1157.35333, MR 0609732
Reference: [20] Tobiska L.: Full and weighted upwind finite element methods.in: Splines in Numerical Analysis (Mathematical Research Volume 52, J.W. Schmidt, H. Späth - eds.), Akademie-Verlag, Berlin, 1989. Zbl 0685.65074, MR 1004263
Reference: [21] Vijayasundaram G.: Transonic flow simulation using an upstream centered scheme of Godunov in finite elements.J. Comp. Phys. 63 (1986), 416-433. MR 0835825
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_9.pdf 323.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo