Title:
|
The Re-nonnegative definite solutions to the matrix equation $AXB=C$ (English) |
Author:
|
Wang, Qingwen |
Author:
|
Yang, Changlan |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
39 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
7-13 |
. |
Category:
|
math |
. |
Summary:
|
An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented. (English) |
Keyword:
|
Re-nonnegative define matrix |
Keyword:
|
matrix equation |
Keyword:
|
generalized singular value decomposition |
MSC:
|
15A24 |
MSC:
|
15A57 |
idZBL:
|
Zbl 0937.15008 |
idMR:
|
MR1622312 |
. |
Date available:
|
2009-01-08T18:38:31Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118980 |
. |
Reference:
|
[1] Wu L., Cain B.: The Re-nonnegative definite solutions to matrix inverse problem $AX=B$.Linear Algebra Appl. 236 (1996), 137-146. MR 1375611 |
Reference:
|
[2] Khatri C.G., Mitra S.K.: Hermitian and nonnegative definite solutions of linear matrix equations.SIAM J. Appl. Math. 31.4 (1976), 579-585. Zbl 0359.65033, MR 0417212 |
Reference:
|
[3] Chu K.E.: Singular value and general singular value decompositions and the solution of linear matrix equation.Linear Algebra Appl. 88/89 (1987), 83-98. MR 0882442 |
Reference:
|
[4] Porter A.D., Mousouris N.: Ranked solutions of $AXC=B$ and $AX=B$.Linear Algebra Appl. 24 (1979), 217-224. Zbl 0411.15009, MR 0524838 |
Reference:
|
[5] Dai H.: On the symmetric solution of linear matrix equations.Linear Algebra Appl. 131 (1990), 1-7. MR 1057060 |
Reference:
|
[6] Wang Q.W.: The metapositive definite self-conjugate solutions of the matrix equation $AXB=C$ over a skew field.Chinese Quarterly J. Math. 3 (1995), 42-51. |
Reference:
|
[7] Wang Q.W.: The matrix equation $AXB=C$ over an arbitrary skew field.Chinese Quarterly J. Math. 4 (1996), 1-5. |
Reference:
|
[8] Wang Q.W.: Skewpositive semidefinite solutions to the quaternion matrix equation $AXB=C$.Far East. J. Math. Sci., to appear. MR 1432967 |
Reference:
|
[9] Paige C.C., Saunders M.A.: Towards a generalized singular value decomposition.SIAM J. Numer. Anal. 18 (1981), 398-405. Zbl 0471.65018, MR 0615522 |
Reference:
|
[10] Stewart G.W.: Computing the CS-decomposition of a partitioned orthogonal matrix.Numer. Math. 40 (1982), 297-306. MR 0695598 |
. |