Previous |  Up |  Next

Article

Title: The Re-nonnegative definite solutions to the matrix equation $AXB=C$ (English)
Author: Wang, Qingwen
Author: Yang, Changlan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 7-13
.
Category: math
.
Summary: An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented. (English)
Keyword: Re-nonnegative define matrix
Keyword: matrix equation
Keyword: generalized singular value decomposition
MSC: 15A24
MSC: 15A57
idZBL: Zbl 0937.15008
idMR: MR1622312
.
Date available: 2009-01-08T18:38:31Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118980
.
Reference: [1] Wu L., Cain B.: The Re-nonnegative definite solutions to matrix inverse problem $AX=B$.Linear Algebra Appl. 236 (1996), 137-146. MR 1375611
Reference: [2] Khatri C.G., Mitra S.K.: Hermitian and nonnegative definite solutions of linear matrix equations.SIAM J. Appl. Math. 31.4 (1976), 579-585. Zbl 0359.65033, MR 0417212
Reference: [3] Chu K.E.: Singular value and general singular value decompositions and the solution of linear matrix equation.Linear Algebra Appl. 88/89 (1987), 83-98. MR 0882442
Reference: [4] Porter A.D., Mousouris N.: Ranked solutions of $AXC=B$ and $AX=B$.Linear Algebra Appl. 24 (1979), 217-224. Zbl 0411.15009, MR 0524838
Reference: [5] Dai H.: On the symmetric solution of linear matrix equations.Linear Algebra Appl. 131 (1990), 1-7. MR 1057060
Reference: [6] Wang Q.W.: The metapositive definite self-conjugate solutions of the matrix equation $AXB=C$ over a skew field.Chinese Quarterly J. Math. 3 (1995), 42-51.
Reference: [7] Wang Q.W.: The matrix equation $AXB=C$ over an arbitrary skew field.Chinese Quarterly J. Math. 4 (1996), 1-5.
Reference: [8] Wang Q.W.: Skewpositive semidefinite solutions to the quaternion matrix equation $AXB=C$.Far East. J. Math. Sci., to appear. MR 1432967
Reference: [9] Paige C.C., Saunders M.A.: Towards a generalized singular value decomposition.SIAM J. Numer. Anal. 18 (1981), 398-405. Zbl 0471.65018, MR 0615522
Reference: [10] Stewart G.W.: Computing the CS-decomposition of a partitioned orthogonal matrix.Numer. Math. 40 (1982), 297-306. MR 0695598
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_2.pdf 190.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo