Previous |  Up |  Next

Article

Title: Cauchy problem for multidimensional coupled system of nonlinear Schrödinger equation and generalized IMBq equation (English)
Author: Guowang, Chen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 15-38
.
Category: math
.
Summary: The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation $$ i\varepsilon_t+\nabla^2\varepsilon-u\varepsilon=0, $$ $$ u_{tt}-\nabla^2u-a\nabla^2u_{tt}=\nabla^2f(u)+\nabla^2(|\varepsilon|^2) $$ are proved. (English)
Keyword: coupled system of nonlinear Schrödinger equation and generalized IMBq
Keyword: multidimensional
Keyword: periodic boundary value problem
Keyword: Cauchy problem
Keyword: generalized local solution
Keyword: classical local solution
MSC: 35D05
MSC: 35K55
MSC: 35L35
MSC: 35Q55
idZBL: Zbl 0940.35181
idMR: MR1622316
.
Date available: 2009-01-08T18:38:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118981
.
Reference: [1] Makhankov V.G.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equations.Phys. Lett. 50 A (1974), 42-44.
Reference: [2] Makhankov V.G.: Dynamics of classical solitons (in non-integrable systems).Physics Reports, A review section of Physics Letters (section C), \bf 35(1) (1978), 1-128. MR 0481361
Reference: [3] Nishikawa K., Hajo H., Mima K., Ikezi H.: Coupled nonlinear electron-plasma and ion- acoustic waves.Phys. Rev. Lett. 33 (1974), 148-150.
Reference: [4] Makhankov V.G.: Preprint.JINR E5-8359, Dubna, 1974.
Reference: [5] Bogoluosksy J.L., Makhankov V.G.: Preprint.JINR E4-9425, Dubna, 1975.
Reference: [6] Reed M., Simon B.: Method of Modern Mathematical Physics.Academic Press, New York and London, 1972. MR 0493419
Reference: [7] Vejvoda O.: Partial Differential Equations: Time-Periodic Solutions.Martinus Nijhoff Publishers, The Hague, Boston, London, 1982. Zbl 0501.35001
Reference: [8] Maz'ja V.G.: Sobolev Spaces.Springer-Verlag, 1985. Zbl 0692.46023, MR 0817985
Reference: [9] Friedman A.: Partial Differential Equations of Parabolic Type.Prentice-Hall, Inc., 1964. Zbl 0173.12701, MR 0181836
Reference: [10] Chen Guowang, Yang Zhijian, Zhao Zhancai: Initial value problems and first boundary problems for a class of quasilinear wave equations.Acta Mathematicae Applicatae Sinica 9 (1993), 289-301. Zbl 0822.35094
Reference: [11] Sun Hesheng: On the mixed initial boundary value problem for semilinear degenerate evolution equation (in Chinese).Chinese Annals of Mathematics 8 (A) (1987), 32-43. MR 0901636
Reference: [12] Yosida K.: Functional Analysis.Springer, 1978. Zbl 0830.46001, MR 0500055
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_3.pdf 308.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo