Previous |  Up |  Next

Article

Title: An independency result in connectification theory (English)
Author: Fedeli, Alessandro
Author: Le Donne, Attilio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 331-334
.
Category: math
.
Summary: A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC. (English)
Keyword: connectifiable
Keyword: perfect
Keyword: feebly compact
MSC: 03E35
MSC: 54A35
MSC: 54C25
MSC: 54D05
MSC: 54D25
idZBL: Zbl 0976.54018
idMR: MR1732654
.
Date available: 2009-01-08T18:52:42Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119089
.
Reference: [1] Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Connectifying some spaces.Topology Appl. 71 (1996), 203-215. MR 1397942
Reference: [2] Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Connectedness and local connectedness of topological groups and extensions.Comment. Math. Univ. Carolinae, to appear. MR 1756549
Reference: [3] Bagley R.W., Connell E.H., McKnight J.D., Jr.: On properties characterizing pseudocompact spaces.Proc. A.M.S. 9 (1958), 500-506. MR 0097043
Reference: [4] van Douwen E.K.: The integers and topology.111-167 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). Zbl 0561.54004, MR 0776622
Reference: [5] Engelking R.: General Topology.Sigma series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [6] Fedeli A., Le Donne A.: On locally connected connectifications.Topology Appl. (1998). Zbl 0928.54018
Reference: [7] Fedeli A., Le Donne A.: Connectifications and open components.submitted. Zbl 0953.54023
Reference: [8] Kunen K.: Set Theory.North Holland (1980). Zbl 0443.03021, MR 0597342
Reference: [9] Ostaszewski A.J.: On countably compact, perfectly normal spaces.J. London Math. Soc. (2) 14 (1976), 505-516. Zbl 0348.54014, MR 0438292
Reference: [10] Porter J.R., Woods R.G.: Subspaces of connected spaces.Topology Appl. 68 (1996), 113-131. Zbl 0855.54025, MR 1374077
Reference: [11] Swardson M.A.: Nearly realcompact spaces and $T_2$-connectifiability.358-361 Proceedings of the 8th Prague Topological Symposium (1996). MR 1617114
Reference: [12] Vaughan J.E.: Countably compact and sequentially compact spaces.569-602 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). Zbl 0562.54031, MR 0776631
Reference: [13] Watson S., Wilson R.G.: Embeddings in connected spaces.Houston J. Math. 19 (1993), 3 469-481. Zbl 0837.54012, MR 1242433
Reference: [14] Weiss W.A.R.: Countably compact spaces and Martin's axiom.Canad. J. Math. 30 (1978), 243-249. Zbl 0357.54019, MR 0467673
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_15.pdf 162.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo