Previous |  Up |  Next

Article

Title: Absolute countable compactness of products and topological groups (English)
Author: Song, Yan-Kui
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 367-372
.
Category: math
.
Summary: In this paper, we generalize Vaughan's and Bonanzinga's results on absolute countable compactness of product spaces and give an example of a separable, countably compact, topological group which is not absolutely countably compact. The example answers questions of Matveev [8, Question 1] and Vaughan [9, Question (1)]. (English)
Keyword: compact
Keyword: countably compact
Keyword: absolutely countably compact
Keyword: hereditarily absolutely countably compact
Keyword: topological group
MSC: 54B10
MSC: 54D20
MSC: 54D55
MSC: 54H11
idZBL: Zbl 0976.54021
idMR: MR1732658
.
Date available: 2009-01-08T18:53:13Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119093
.
Reference: [1] Arhangel'skii A.V.: On bicompacta hereditarily satisfying Suslin's condition tightness and free sequences.Soviet Math. Dokl. 12 (1971), 1253-1257. MR 0119188
Reference: [2] Bonanzinga M.: On the product of a compact space with an hereditarily absolutely countably compact space.Comment. Math. Univ. Carolinae 38 (1997), 557-562. Zbl 0937.54013, MR 1485076
Reference: [3] van Douwen E.K.: The Integer and Topology.Handbook of Set-theoertic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 111-167. MR 0776619
Reference: [4] Engelking R.: General Topology, Revised and completed edition.Heldermann Verlag Berlin (1989). MR 1039321
Reference: [5] Fleishman W.M.: A new extension of countable compactness.Fund. Math. 67 (1970), 1-9. MR 0264608
Reference: [6] Kombarov A.P.: On the product of normal spaces.Soviet. Math. Dokl. 13 (4) (1972), 1068-1071. Zbl 0259.54006
Reference: [7] Matveev M.V.: Absolutely countably compact spaces.Topology Appl. 58 (1994), 81-92. Zbl 0801.54021, MR 1280711
Reference: [8] Matveev M.V.: A countably compact topological group which is not absolutely countably compact.Questions Answers Gen. Topology 11 (1993), 173-176. Zbl 0808.54025, MR 1234212
Reference: [9] Stephenson R.M., Jr.: Initially $\kappa$-Compact and Related Space.Handbook of Set-theoertic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 603-632. MR 0776632
Reference: [10] Vaughan J.E.: A countably compact, separable space which is not absolutely countably compact.Comment. Math. Univ. Carolinae 34 (1995), 197-200. Zbl 0833.54012, MR 1334426
Reference: [11] Vaughan J.E.: On the product of a compact space with an absolutely countably compact space.Annals of New York Acad. Soc. 788 (1996), 203-208. Zbl 0917.54023, MR 1460834
Reference: [12] Vaughan J.E.: Countably Compact and Sequentially Compact Spaces.Handbook of Set-theoertic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 569-602. Zbl 0562.54031, MR 0776631
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_19.pdf 189.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo