Previous |  Up |  Next

Article

Title: Lattice points in super spheres (English)
Author: Krätzel, Ekkehard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 373-391
.
Category: math
.
Summary: In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p<k<2p-4$. (English)
Keyword: lattice points
Keyword: exponential sums
MSC: 11P21
idZBL: Zbl 0993.11050
idMR: MR1732659
.
Date available: 2009-01-08T18:53:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119094
.
Reference: [1] Copson E.T.: Asymptotic Expansions.Cambridge University Press, Cambridge, 1965. Zbl 1096.41001, MR 0168979
Reference: [2] Hoeppner S., Krätzel E.: The number of lattice points inside and on the surface $|t_1|^k+|t_2|^k+\ldots +|t_n|^k=x$.Math. Nachr. 163 (1993), 257-268. MR 1235070
Reference: [3] Krätzel E.: Lattice Points.DVW, Berlin, 1988 and Kluwer, Dordrecht-Boston-London, 1988. MR 0998378
Reference: [4] Kuba G.: On the sums of two k-th powers of numbers in residue classes II.Abh. Math. Sem. Hamburg 63 (1993), 87-95. MR 1227866
Reference: [5] Müller W., Nowak W.G.: Lattice points in planar domains: Applications of Huxley's Discrete Hardy-Littlewood-Method, Numbertheoretic analysis.Vienna 1988-1989, Springer Lecture Notes 1452 (eds. E. Hlawka and R.F. Tichy) (1990), pp.139-164.
Reference: [6] Schmidt-Röh R.: Ein additives Gitterpunktproblem.Doctoral Thesis, FSU Jena, 1989.
Reference: [7] Schnabel L.: Über eine Verallgemeinerung des Kreisproblems.Wiss. Z. FSU Jena, Math.-Naturwiss. R. 31 (1982), 667-681. Zbl 0497.10038, MR 0682557
Reference: [8] Wild R.E.: On the number of lattice points in $x^t+y^t=n^{t/2}$.Pacific J. Math. 8 (1958), 929-940. MR 0112883
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_20.pdf 266.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo