Previous |  Up |  Next

Article

Title: A formula for calculation of metric dimension of converging sequences (English)
Author: Mišík, Ladislav, Jr.
Author: Žáčik, Tibor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 393-401
.
Category: math
.
Summary: Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived. (English)
Keyword: metric dimension
Keyword: limit capacity
Keyword: entropy dimension
Keyword: box-counting dimension
Keyword: Hausdorff dimension
Keyword: Kolmogorov dimension
Keyword: Minkowski dimension
Keyword: Bouligand dimension
Keyword: converging sequences
Keyword: convex sequences
Keyword: differentiable function
MSC: 26A51
MSC: 40A05
MSC: 54F50
idZBL: Zbl 0976.54035
idMR: MR1732660
.
Date available: 2009-01-08T18:53:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119095
.
Reference: [M-Z] Mišík L., Žáčik T.: On some properties of the metric dimension.Comment. Math. Univ. Carolinae 31.4 (1990), 781-791. MR 1091376
Reference: [P-S] Pontryagin L.S., Snirelman L.G.: Sur une propriete metrique de la dimension.Annals of Math. 33 (1932), 156-162 Appendix to the Russian translation of ``Dimension Theory'' by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit. Moscow, 1948. MR 1503042
Reference: [H] Hawkes J.: Hausdorff measure, entropy and the independents of small sets.Proc. London Math. Soc. (3) 28 (1974), 700-724. MR 0352412
Reference: [B-T] Besicovitch A.S., Taylor S.J.: On the complementary intervals of a linear closed sets of zero Lebesgue measure.J. London Math. Soc. 29 (1954), 449-459. MR 0064849
Reference: [K-A] Koçak Ş., Azcan H.: Fractal dimensions of some sequences of real numbers.Do{ğ}a - Tr. J. of Mathematics 17 (1993), 298-304. MR 1255026
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_21.pdf 210.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo