Title:
|
Solutions to a perturbed critical semilinear equation concerning the $N$-Laplacian in $\Bbb R^{N}$ (English) |
Author:
|
Tonkes, Elliot |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
679-699 |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the $N$-Laplacian $$ - \Delta_N u \equiv - \operatorname{div} (|\nabla u|^{N-2} \nabla u) = e(x,u) + h(x) \text{ in } \Omega $$ where $u \in W_0^{1,N}(\Bbb R^{N})$, $\Omega$ is a bounded smooth domain in $\Bbb R^{N}$, $N \geq 2$, $e(x,u)$ is a critical nonlinearity in the sense of the Trudinger-Moser inequality and $h(x) \in (W_0^{1,N})^*$ is a small perturbation. (English) |
Keyword:
|
variational methods |
Keyword:
|
elliptic equations |
Keyword:
|
critical growth |
MSC:
|
35B20 |
MSC:
|
35B33 |
MSC:
|
35B34 |
MSC:
|
35J20 |
MSC:
|
35J60 |
MSC:
|
35J65 |
idZBL:
|
Zbl 1064.35511 |
idMR:
|
MR1756545 |
. |
Date available:
|
2009-01-08T18:56:36Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119123 |
. |
Reference:
|
[1] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian.Ann. Sc. Norm. Sup. Pisa, Series 4 17 (1990), 393-413. Zbl 0732.35028, MR 1079983 |
Reference:
|
[2] Adimurthi: Some remarks on the Dirichlet problem with critical growth for the $n$-Laplacian.Houston J. Math. 17 (2) (1991), 285-298. Zbl 0768.35015, MR 1115150 |
Reference:
|
[3] Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183 |
Reference:
|
[4] Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals.Proc. Amer. Math. Soc. 88 (3) (1983), 486-490. Zbl 0526.46037, MR 0699419 |
Reference:
|
[5] Carleson L., Chang S-Y.: On the existence of an extremal function for an inequality of J. Moser.Bull. Sci. Math. (2) 110 (1986), 113-127. MR 0878016 |
Reference:
|
[6] Chabrowski J.: On multiple solutions for the nonhomogeneous $p$-Laplacian with a critical Sobolev exponent.Differential Integral Equations 8 (4) (1995), 705-716. Zbl 0814.35033, MR 1306587 |
Reference:
|
[7] Yinbin Deng, Yi Li: Existence and bifurcation of the positive solutions of a semilinear equation with critical exponent.J. Differential Equations 130 (1996), 179-200. MR 1409029 |
Reference:
|
[8] de Figueiredo D.G., Miyagaki O.H., Ruf B.: Elliptic equations in $\Bbb R^{2}$ with nonlinearities in the critical growth range.Calc. Var. Partial Differential Equations 3 (2) (1995), 139-153. MR 1386960 |
Reference:
|
[9] Ekeland I.: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619 |
Reference:
|
[10] Kai-Ching Lin: Extremal functions for Moser's inequality.Trans. Amer. Math. Soc. 348 (7) (1996), 2663-2671. MR 1333394 |
Reference:
|
[11] Lions P.L.: The Concentration Compactness Principle in the Calculus of Variations, part I.Rev. Mat. Iberoamericana 1 (1985), 185-201. MR 0834360 |
Reference:
|
[12] Moser J.: A sharp form of an inequality by N. Trudinger.Indiana Univ. Math. J. 20 (11) (1971), 1077-1092. MR 0301504 |
Reference:
|
[13] Do Ó J.M.B.: Semilinear Dirichlet problems for the $N$-Laplacian in ${\Bbb R}^N$ with nonlinearities in the critical growth range.Differential Integral Equations 9 (5) (1996), 967-979. MR 1392090 |
Reference:
|
[14] Rabinowitz P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.CBMS, No. 65, AMS, 1986. Zbl 0609.58002, MR 0845785 |
Reference:
|
[15] Panda R.: On semilinear Neumann problems with critical growth for the $n$-Laplacian.Nonlinear Anal. 26 (1996), 1347-1366. Zbl 0854.35045, MR 1377667 |
Reference:
|
[16] Tarantello G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent.Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (3) (1992), 281-304. Zbl 0785.35046, MR 1168304 |
Reference:
|
[17] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications.Journal of Mathematics and Mechanics 17 (5) (1967), 473-483. Zbl 0163.36402, MR 0216286 |
. |