Previous |  Up |  Next

Article

Title: The Tamano Theorem in $\Cal MAP$ (English)
Author: Buhagiar, David
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 4
Year: 1999
Pages: 755-770
.
Category: math
.
Summary: In this paper we continue with the study of paracompact maps introduced in [1]. We give two external characterizations for paracompact maps including a characterization analogous to The Tamano Theorem in the category $\Cal TOP$ (of topological spaces and continuous maps as morphisms). A necessary and sufficient condition for the Tychonoff product of a closed map and a compact map to be closed is also given. (English)
Keyword: fibrewise topology
Keyword: continuous map
Keyword: closed map
Keyword: paracompact map
MSC: 54B30
MSC: 54C05
MSC: 54C10
MSC: 54C99
idZBL: Zbl 1010.54014
idMR: MR1756550
.
Date available: 2009-01-08T18:57:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119128
.
Reference: [1] Buhagiar D.: Paracompact maps.Questions Answers Gen. Topology 15 (1997), 2 203-223. Zbl 0997.54012, MR 1472184
Reference: [2] Buhagiar D.: The category ${\mathscr{MAP}}$.submitted for publication, 1998.
Reference: [3] Buhagiar D., Miwa T.: Covering properties on maps.Questions Answers Gen. Topology 16 (1998), 1 53-66. Zbl 0997.54033, MR 1614753
Reference: [4] Buhagiar D., Miwa T., Pasynkov B.A.: On metrizable type $({MT}$-$)$ maps and spaces.to appear in Topology Appl. Zbl 0953.54017, MR 1701238
Reference: [5] Dieudonné J.: Une généralisation des espaces compacts.J. de Math. Pures et Appl. 23 (1944), 65-76. MR 0013297
Reference: [6] Engelking R.: General Topology.revised ed., Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] James I.M.: Spaces.Bull. London Math. Soc. 18 (1986), 529-559. Zbl 0647.05005, MR 0859946
Reference: [8] James I.M.: Fibrewise Topology.Cambridge Univ. Press, Cambridge, 1989. Zbl 1147.55001, MR 1010230
Reference: [9] Johnstone P.T.: The Gleason cover of a topos II.J. Pure Appl. Algebra 22 (1981), 229-247. Zbl 0445.18005, MR 0629332
Reference: [10] Johnstone P.T.: Wallman compactification of locales.Houston J. Math. 10 (1984), 201-206. Zbl 0549.54018, MR 0744904
Reference: [11] Künzi H.P.A., Pasynkov B.A.: Tychonoff compactifications and R-completions of mappings and rings of continuous functions.Categorical Topology (L'Aquila, 1994), Kluwer Acad. Publ., Dordrecht, 1996, pp.175-201. MR 1412584
Reference: [12] Lever D.: Continuous families: Categorical aspects.Cahiers de topologie et géométrie différentielle 24 (1983), 393-432. Zbl 0535.18004, MR 0749470
Reference: [13] Lever D.: Relative topology.Categorical Topology, Proc. Conference Toledo, Ohio, 1983, Heldermann, Berlin, 1984. Zbl 0555.18006, MR 0785023
Reference: [14] Morita K.: Paracompactness and product spaces.Fund. Math. 50 (1962), 223-236. Zbl 0099.17401, MR 0132525
Reference: [15] Pasynkov B.A.: On extension to mappings of certain notions and assertions concerning spaces (in Russian).Mappings and Functors, Izdat. MGU, Moscow, 1984, pp.72-102. MR 0791256
Reference: [16] Pasynkov B.A.: Elements of the general topology of continuous maps (in Russian).On Compactness and Completeness Properties of Topological Spaces, ``FAN'' Acad. of Science of the Uzbek. Rep., Tashkent, 1994, pp.50-120.
Reference: [17] Preuss G.: Theory of topological structures (an approach to categorical topology).Mathematics and its Applications, D.Reidel Publishing Company, Dordrecht, Holland, 1987. Zbl 0649.54001, MR 0937052
Reference: [18] Tamano H.: On paracompactness.Pacific J. Math. 10 (1960), 1043-1047. Zbl 0094.35403, MR 0124876
Reference: [19] Tamano H.: On compactifications.J. Math. Kyoto Univ. 1 (1962), 161-193. Zbl 0106.15601, MR 0142096
Reference: [20] Ulyanov V.M.: On compact extensions of countable character and absolutes (in Russian).Math. Sb. 98 (1975), 2 223-254. MR 0394534
Reference: [21] Vainstein I.A.: On closed maps of metric spaces (in Russian).Doklady Akad. Nauk SSSR 57 (1947), 319-321. MR 0022067
Reference: [22] Whyburn G.T.: A unified space for mappings.Trans. Amer. Math. Soc. 74 (1953), 2 344-350. Zbl 0053.12303, MR 0052762
Reference: [23] Whyburn G.T.: Compactification of mappings.Math. Ann. 166 (1966), 1 168-174. Zbl 0141.20505, MR 0200905
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-4_12.pdf 292.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo