Previous |  Up |  Next

Article

Title: Products, the Baire category theorem, and the axiom of dependent choice (English)
Author: Herrlich, Horst
Author: Keremedis, Kyriakos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 4
Year: 1999
Pages: 771-775
.
Category: math
.
Summary: In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire. (English)
Keyword: axiom of dependent choice
Keyword: Baire category theorem
Keyword: Baire space
Keyword: (countably) compact
Keyword: pseudocompact
Keyword: Čech-complete
Keyword: regular-closed
Keyword: pseudo-complete
Keyword: product spaces
MSC: 03E25
MSC: 04A25
MSC: 54A35
MSC: 54B10
MSC: 54D30
MSC: 54E52
idZBL: Zbl 1010.03037
idMR: MR1756551
.
Date available: 2009-01-08T18:57:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119129
.
Reference: [1] Blaire C.E.: The Baire Category Theorem implies the principle of dependent choice.Bull. Acad. Math. Astronom. Phys. 25 (1977), 933-934. MR 0469765
Reference: [2] Bourbaki N.: Topologie générale.ch. IX., Paris, 1948. Zbl 1107.54001
Reference: [3] Brunner N.: Kategoriesätze und Multiples Auswahlaxiom.Zeitschr. f. Math. Logik und Grundlagen d. Math. 29 (1983), 435-443. Zbl 0526.03031, MR 0716858
Reference: [4] Čech E.: On bicompact spaces.Ann. Math. 38 (1937), 823-844. MR 1503374
Reference: [5] Colmez J.: Sur les espaces précompacts.C.R. Acad. Paris 234 (1952), 1019-1021. Zbl 0047.16202, MR 0055658
Reference: [6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Fossy J., Morillon M.: The Baire category property and some notions of compactness.preprint, 1995. Zbl 0922.03070, MR 1624737
Reference: [8] Goldblatt R.: On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic.J. Symbolic Logic 50 (1985), 412-422. Zbl 0567.03023, MR 0793122
Reference: [9] Hausdorff F.: Grundzüge der Mengenlehre.Leipzig, 1914. Zbl 1010.01031
Reference: [10] Herrlich H.: $T_\nu$-Abgeschlossenheit und $T_\nu$-Minimalität.Math. Z. 88 (1965), 285-294. Zbl 0139.40203, MR 0184191
Reference: [11] Herrlich H., Keremedis K.: The Baire Category Theorem and Choice.to appear in Topology Appl. Zbl 0991.54036, MR 1787859
Reference: [12] Howard P., Rubin J.E.: Consequences of the axiom of choice.AMS Math. Surveys and Monographs 59, 1998. Zbl 0947.03001, MR 1637107
Reference: [13] Moore R.L.: An extension of the theorem that no countable point set is perfect.Proc. Nat. Acad. Sci. USA 10 (1924), 168-170.
Reference: [14] Oxtoby J.C.: Cartesian products of Baire spaces.Fund. Math. 49 (1961), 157-166. Zbl 0113.16402, MR 0140638
Reference: [15] Pettey D.H.: Products of regular-closed spaces.Topology Appl. 14 (1982), 189-199. Zbl 0499.54017, MR 0667666
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-4_13.pdf 176.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo