Title:
|
$C_p(I)$ is not subsequential (English) |
Author:
|
Malykhin, V. I. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
785-788 |
. |
Category:
|
math |
. |
Summary:
|
If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential. (English) |
Keyword:
|
$C_p$-space |
Keyword:
|
sequential |
Keyword:
|
subsequential |
MSC:
|
03E35 |
MSC:
|
54A20 |
MSC:
|
54A25 |
MSC:
|
54A35 |
idZBL:
|
Zbl 1009.54033 |
idMR:
|
MR1756553 |
. |
Date available:
|
2009-01-08T18:57:31Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119131 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Dordrecht, Boston, London 54 (1992). |
Reference:
|
[2] Malykhin V.I.: On subspaces of sequential spaces.Math. Notes (in Russian) 64 (1998), 3 407-413. MR 1680130 |
Reference:
|
[3] Pytke'ev E.G.: On maximally resolvable spaces.Proc. Steklov Institute of Mathematics (1984), 154 225-230. |
Reference:
|
[4] Malykhin V.I., Tironi G.: Weakly Fréchet-Urysohn spaces.Quaderni Matematica, II Serie, Univ. di Trieste (1996), 386 1-9. |
. |