Title:
|
On the continuity of the pressure for monotonic mod one transformations (English) |
Author:
|
Raith, Peter |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
61-78 |
. |
Category:
|
math |
. |
Summary:
|
If $f:[0,1]\to{\Bbb R}$ is strictly increasing and continuous define $T_fx=f(x)\, (\operatorname{mod} 1)$. A transformation $\tilde{T}:[0,1]\to [0,1]$ is called $\varepsilon$-close to $T_f$, if $\tilde{T}x=\tilde{f}(x)\, (\operatorname{mod} 1)$ for a strictly increasing and continuous function $\tilde{f}:[0,1]\to{\Bbb R}$ with $\|\tilde{f}-f\|_{\infty}<\varepsilon$. It is proved that the topological pressure $p(T_f,g)$ is lower semi-continuous, and an upper bound for the jumps up is given. Furthermore the continuity of the maximal measure is shown, if a certain condition is satisfied. Then it is proved that the topological pressure is upper semi-continuous for every continuous function $g:[0,1]\to{\Bbb R}$, if and only if $0$ is not periodic or $1$ is not periodic. Finally it is shown that the topological entropy is continuous, if $h_{\text{\rm top}}(T_f)>0$. (English) |
Keyword:
|
mod one transformation |
Keyword:
|
topological pressure |
Keyword:
|
topological entropy |
Keyword:
|
maximal measure |
Keyword:
|
perturbation |
MSC:
|
37B40 |
MSC:
|
37D35 |
MSC:
|
37E05 |
MSC:
|
37E99 |
MSC:
|
54H20 |
idZBL:
|
Zbl 1034.37021 |
idMR:
|
MR1756927 |
. |
Date available:
|
2009-01-08T18:58:33Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119141 |
. |
Reference:
|
[1] Alsedà Ll., Ma nosas F., Mumbrú P.: Continuity of entropy for bimodal maps.J. London Math. Soc. 52 (1995), 547-567. MR 1363820 |
Reference:
|
[2] Hofbauer F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy.Israel J. Math. 34 (1979), 213-237 Part 2 Israel J. Math. 38 (1981), 107-115. Zbl 0456.28006, MR 0570882 |
Reference:
|
[3] Hofbauer F.: Monotonic mod one transformations.Studia Math. 80 (1984), 17-40. Zbl 0506.54034, MR 0781724 |
Reference:
|
[4] Misiurewicz M.: Jumps of entropy in one dimension.Fund. Math. 132 (1989), 215-226. Zbl 0694.54019, MR 1002409 |
Reference:
|
[5] Misiurewicz M., Shlyachkov S.V.: Entropy of piecewise continuous interval maps.European Conference on Iteration Theory (ECIT 89), Batschuns, 1989 Ch. Mira, N. Netzer, C. Simó, Gy. Targoński 239-245 World Scientific Singapore (1991). Zbl 1026.37504, MR 1184170 |
Reference:
|
[6] Raith P.: Hausdorff dimension for piecewise monotonic maps.Studia Math. 94 (1989), 17-33. Zbl 0687.58013, MR 1008236 |
Reference:
|
[7] Raith P.: Continuity of the Hausdorff dimension for piecewise monotonic maps.Israel J. Math. 80 (1992), 97-133. Zbl 0768.28010, MR 1248929 |
Reference:
|
[8] Raith P.: Continuity of the Hausdorff dimension for invariant subsets of interval maps.Acta Math. Univ. Comenian. 63 (1994), 39-53. Zbl 0828.58014, MR 1342594 |
Reference:
|
[9] Raith P.: Continuity of the entropy for monotonic mod one transformations.Acta Math. Hungar. 77 (1997), 247-262. Zbl 0906.54016, MR 1485848 |
Reference:
|
[10] Raith P.: Stability of the maximal measure for piecewise monotonic interval maps.Ergodic Theory Dynam. Systems 17 (1997), 1419-1436. Zbl 0898.58015, MR 1488327 |
Reference:
|
[11] Raith P.: The dynamics of piecewise monotonic maps under small perturbations.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 783-811. MR 1627314 |
Reference:
|
[12] Raith P.: Perturbations of a topologically transitive piecewise monotonic map on the interval.Proceedings of the European Conference on Iteration Theory (ECIT 96), Urbino, 1996 (L. Gardini et al., eds.), Grazer Math. Ber. 339 (1999), 301-312. Zbl 0948.37026, MR 1748832 |
Reference:
|
[13] Raith P.: Discontinuities of the pressure for piecewise monotonic interval maps.Ergodic Theory Dynam. Systems, to appear preprint, Wien, 1997. Zbl 0972.37024, MR 1826666 |
Reference:
|
[14] Walters P.: An introduction to ergodic theory.Graduate Texts in Mathematics 79 Springer New York (1982). Zbl 0475.28009, MR 0648108 |
. |