Previous |  Up |  Next

Article

Title: Topological sequence entropy for maps of the circle (English)
Author: Hric, Roman
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 53-59
.
Category: math
.
Summary: A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces. (English)
Keyword: chaotic map
Keyword: circle map
Keyword: topological sequence entropy
MSC: 26A18
MSC: 37B40
MSC: 37D45
MSC: 37E10
MSC: 54H20
MSC: 58F13
idZBL: Zbl 1039.37007
idMR: MR1756926
.
Date available: 2009-01-08T18:58:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119140
.
Reference: [ALM] Alsedà L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One.World Scientific Publ. Singapore (1993). MR 1255515
Reference: [AK] Auslander J., Katznelson Y.: Continuous maps of the circle without periodic points.Israel. J. Math. 32 (1979), 375-381. Zbl 0442.54011, MR 0571091
Reference: [BCJ] Balibrea F., Cánovas J.S., Jiménez López V.: Commutativity and noncommutativity of topological sequence entropy.preprint.
Reference: [BC] Block L.S., Coppel W.A.: Dynamics in One Dimension.Lecture Notes in Math., vol. 1513 Springer Berlin (1992). Zbl 0746.58007, MR 1176513
Reference: [FS] Franzová N., Smítal J.: Positive sequence entropy characterizes chaotic maps.Proc. Amer. Math. Soc. 112 (1991), 1083-1086. MR 1062387
Reference: [G] Goodman T.N.T.: Topological sequence entropy.Proc. London Math. Soc. 29 (1974), 331-350. Zbl 0293.54043, MR 0356009
Reference: [HY] Hocking J.G., Young G.S.: Topology.Dover New York (1988). Zbl 0718.55001, MR 0939613
Reference: [H] Hric R.: Topological sequence entropy for maps of the interval.Proc. Amer. Math. Soc. 127 (1999), 2045-2052. Zbl 0923.26004, MR 1487372
Reference: [JS] Janková K., Smítal J.: A characterization of chaos.Bull. Austral. Math. Soc. 34 (1986), 283-292. MR 0854575
Reference: [KS] Kolyada S., Snoha Ł.: Topological entropy of nonautonomous dynamical systems.Random and Comp. Dynamics 4 (1996), 205-233. Zbl 0909.54012, MR 1402417
Reference: [Ku] Kuchta M.: Characterization of chaos for continuous maps of the circle.Comment. Math. Univ. Carolinae 31 (1990), 383-390. Zbl 0728.26011, MR 1077909
Reference: [KuS] Kuchta M., Smítal J.: Two point scrambled set implies chaos.European Conference on Iteration Theory ECIT'87 World Sci. Publishing Co. Singapore. MR 1085314
Reference: [L] Lemańczyk M.: The sequence entropy for Morse shifts and some counterexamples.Studia Math. 52 (1985), 221-241. MR 0825480
Reference: [LY] Li T Y., Yorke J.A.: Period three implies chaos.Amer. Math. Monthly 82 (1975), 985-992. Zbl 0351.92021, MR 0385028
Reference: [S] Smítal J.: Chaotic functions with zero topological entropy.Trans. Amer. Math. Soc. 297 (1986), 269-281. MR 0849479
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_5.pdf 205.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo