Title:
|
Topological sequence entropy for maps of the circle (English) |
Author:
|
Hric, Roman |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
53-59 |
. |
Category:
|
math |
. |
Summary:
|
A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces. (English) |
Keyword:
|
chaotic map |
Keyword:
|
circle map |
Keyword:
|
topological sequence entropy |
MSC:
|
26A18 |
MSC:
|
37B40 |
MSC:
|
37D45 |
MSC:
|
37E10 |
MSC:
|
54H20 |
MSC:
|
58F13 |
idZBL:
|
Zbl 1039.37007 |
idMR:
|
MR1756926 |
. |
Date available:
|
2009-01-08T18:58:22Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119140 |
. |
Reference:
|
[ALM] Alsedà L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One.World Scientific Publ. Singapore (1993). MR 1255515 |
Reference:
|
[AK] Auslander J., Katznelson Y.: Continuous maps of the circle without periodic points.Israel. J. Math. 32 (1979), 375-381. Zbl 0442.54011, MR 0571091 |
Reference:
|
[BCJ] Balibrea F., Cánovas J.S., Jiménez López V.: Commutativity and noncommutativity of topological sequence entropy.preprint. |
Reference:
|
[BC] Block L.S., Coppel W.A.: Dynamics in One Dimension.Lecture Notes in Math., vol. 1513 Springer Berlin (1992). Zbl 0746.58007, MR 1176513 |
Reference:
|
[FS] Franzová N., Smítal J.: Positive sequence entropy characterizes chaotic maps.Proc. Amer. Math. Soc. 112 (1991), 1083-1086. MR 1062387 |
Reference:
|
[G] Goodman T.N.T.: Topological sequence entropy.Proc. London Math. Soc. 29 (1974), 331-350. Zbl 0293.54043, MR 0356009 |
Reference:
|
[HY] Hocking J.G., Young G.S.: Topology.Dover New York (1988). Zbl 0718.55001, MR 0939613 |
Reference:
|
[H] Hric R.: Topological sequence entropy for maps of the interval.Proc. Amer. Math. Soc. 127 (1999), 2045-2052. Zbl 0923.26004, MR 1487372 |
Reference:
|
[JS] Janková K., Smítal J.: A characterization of chaos.Bull. Austral. Math. Soc. 34 (1986), 283-292. MR 0854575 |
Reference:
|
[KS] Kolyada S., Snoha Ł.: Topological entropy of nonautonomous dynamical systems.Random and Comp. Dynamics 4 (1996), 205-233. Zbl 0909.54012, MR 1402417 |
Reference:
|
[Ku] Kuchta M.: Characterization of chaos for continuous maps of the circle.Comment. Math. Univ. Carolinae 31 (1990), 383-390. Zbl 0728.26011, MR 1077909 |
Reference:
|
[KuS] Kuchta M., Smítal J.: Two point scrambled set implies chaos.European Conference on Iteration Theory ECIT'87 World Sci. Publishing Co. Singapore. MR 1085314 |
Reference:
|
[L] Lemańczyk M.: The sequence entropy for Morse shifts and some counterexamples.Studia Math. 52 (1985), 221-241. MR 0825480 |
Reference:
|
[LY] Li T Y., Yorke J.A.: Period three implies chaos.Amer. Math. Monthly 82 (1975), 985-992. Zbl 0351.92021, MR 0385028 |
Reference:
|
[S] Smítal J.: Chaotic functions with zero topological entropy.Trans. Amer. Math. Soc. 297 (1986), 269-281. MR 0849479 |
. |