Previous |  Up |  Next

Article

Title: Limit points of arithmetic means of sequences in Banach spaces (English)
Author: Lávička, Roman
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 97-106
.
Category: math
.
Summary: We shall prove the following statements: Given a sequence $\{a_n\}_{n=1}^{\infty}$ in a Banach space $\bold X$ enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) $\{b_n\}_{n=1}^{\infty}$ of the sequence $\{a_n\}_{n=1}^{\infty}$ such that $$ \lim_{n\to\infty} {1\over n}\sum_{j=1}^n b_j=a $$ whenever $a$ belongs to the closed convex hull of the set of weak limit points of $\{a_n\}_{n=1}^{\infty}$. In case $\bold X$ has the Banach-Saks property and $\{a_n\}_{n=1}^{\infty}$ is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the problems investigated goes back to Lévy laplacian from potential theory in Hilbert spaces. (English)
Keyword: Banach-Saks property
Keyword: arithmetic means
Keyword: limit points
Keyword: subsequences
Keyword: permutations of sequences
MSC: 40G05
MSC: 40H05
MSC: 46B20
MSC: 47F05
idZBL: Zbl 1040.46013
idMR: MR1756929
.
Date available: 2009-01-08T18:58:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119143
.
Reference: [1] Cooke R.G.: Infinite Matrices and Sequence Spaces.Macmillan, London, 1950. Zbl 0132.28901, MR 0040451
Reference: [2] Conway J.B.: A Course in Functional Analysis.2-nd ed., Springer-Verlag, New York/Berlin, 1990. Zbl 0706.46003, MR 1070713
Reference: [3] Diestel J.: Geometry of Banach Spaces - Selected Topics.Springer-Verlag, New York/Berlin, 1975. Zbl 0466.46021, MR 0461094
Reference: [4] Diestel J.: Sequences and Series in Banach Spaces.Springer-Verlag, New York/Berlin, 1984. MR 0737004
Reference: [5] Erdös P., Magidor M.: A note on regular methods of summability and the Banach-Saks property.Proc. Amer. Math. Soc. 59 (1976), 232-234. MR 0430596
Reference: [6] Figiel T., Sucheston L.: An application of Ramsey sets in analysis.Adv. Math. 20 (1976), 103-105. Zbl 0325.46029, MR 0417757
Reference: [7] James R.C.: Weakly compact sets.Trans. Amer. Math. Soc. 113 (1964), 129-140. Zbl 0129.07901, MR 0165344
Reference: [8] Lévy P.: Lecons d'analyse fonctionnelle.Gauthier-Villars, Paris, 1922. Zbl 0043.32302
Reference: [9] Lévy P.: Problèmes concrets d'analyse fonctionnelle.Gauthier-Villars, Paris, 1951. Zbl 0155.18201, MR 0041346
Reference: [10] Lévy P.: Quelques aspects de la pensée d'un mathématicien.Blanchard, Paris, 1970. Zbl 0219.01020, MR 0268008
Reference: [11] Rudin W.: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0867.46001, MR 0365062
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_8.pdf 219.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo