Previous |  Up |  Next

Article

Title: Boundedness of linear maps (English)
Author: Rao, T. S. S. R. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 107-110
.
Category: math
.
Summary: In this short note we consider necessary and sufficient conditions on normed linear spaces, that ensure the boundedness of any linear map whose adjoint maps extreme points of the unit ball of the domain space to continuous linear functionals. (English)
Keyword: bounded linear maps
Keyword: extreme points
Keyword: barrelled spaces
MSC: 46B20
idZBL: Zbl 1040.46016
idMR: MR1756930
.
Date available: 2009-01-08T18:58:54Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119144
.
Reference: [1] Deville R., Godefroy G., Zizler V.: Smoothness and renormings in Banach spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics 64, New York, 1993. Zbl 0782.46019, MR 1211634
Reference: [2] Diestel J.: Sequences and series in Banach spaces.GTM 92, Springer, Berlin, 1984. MR 0737004
Reference: [3] Fonf V.P.: Weakly extremal properties of Banach spaces.Math. Notes 45 (1989), 488-494. Zbl 0699.46010, MR 1019040
Reference: [4] Fonf V.P.: On exposed and smooth points of convex bodies in Banach spaces.Bull. London Math. Soc. 28 (1996), 51-58. Zbl 0879.46001, MR 1356826
Reference: [5] Harmand P., Werner D., Werner W.: $M$-ideals in Banach spaces and Banach algebras.Springer LNM 1547, Berlin, 1993. Zbl 0789.46011, MR 1238713
Reference: [6] Labuschagne L.E., Mascioni V.: Linear maps between $C^\ast$ algebras whose adjoints preserve extreme points of the dual unit ball.Advances in Math. 138 (1998), 15-45. Zbl 0944.46054, MR 1645056
Reference: [7] Rao T.S.S.R.K.: On the extreme point intersection property.``Function spaces, the second conference'', Ed. K. Jarosz, Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, pp.339-346. Zbl 0868.46011, MR 1352241
Reference: [8] Wilansky A.: Modern methods in topological vector spaces.McGraw Hill, New York, 1978. Zbl 0395.46001, MR 0518316
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_9.pdf 164.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo