Previous |  Up |  Next

Article

Title: A-loops close to code loops are groups (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 2
Year: 2000
Pages: 245-249
.
Category: math
.
Summary: Let $Q$ be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group. (English)
Keyword: A-loop
Keyword: central nilpotency
Keyword: Osborn problem
MSC: 20N05
idZBL: Zbl 1038.20046
idMR: MR1780868
.
Date available: 2009-01-08T19:00:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119160
.
Reference: [1] Aschbacher M.: Sporadic Groups.Cambridge Tracts in Mathematics 104, Cambridge University Press, 1994. Zbl 0804.20011, MR 1269103
Reference: [2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245-354. Zbl 0061.02201, MR 0017288
Reference: [3] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms.Ann. of Math. 63 (1954), 308-323. MR 0076779
Reference: [4] Chein O., Goodaire E.G.: Moufang loops with a unique non-identity commutator (associator, square).J. Algebra 130 (1990), 369-384. MR 1051308
Reference: [5] Griess R.L., Jr.: Code loops.J. Algebra 100 (1986), 224-234. Zbl 0589.20051, MR 0839580
Reference: [6] Osborn M.J.: A theorem on A-loops.Proc. Amer. Math. Soc. 9 (1958), 347-349. Zbl 0097.25302, MR 0093555
Reference: [7] Phillips J.D.: On Moufang A-loops.Comment. Math. Univ. Carolinae 41 (2000), 371-375. Zbl 1038.20050, MR 1780878
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-2_4.pdf 166.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo