Previous |  Up |  Next

Article

Keywords:
factorization; holomorphic mapping between Banach spaces; operator ideal
Summary:
We characterize the holomorphic mappings $f$ between complex Ba\-nach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.
References:
[1] Aron R.M., Galindo P.: Weakly compact multilinear mappings. Proc. Edinburgh Math. Soc. 40 (1997), 181-192. MR 1437822 | Zbl 0901.46038
[2] Aron R.M., Schottenloher M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21 (1976), 7-30. MR 0402504 | Zbl 0328.46046
[3] Bourgain J., Diestel J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. MR 0774176 | Zbl 0601.47019
[4] Davis W.J., Figiel T., Johnson W.B., Pełczyński A.: Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311-327. MR 0355536
[5] Dineen S.: Complex Analysis in Locally Convex Spaces. Math. Studies 57, North-Holland, Amsterdam, 1981. MR 0640093 | Zbl 0484.46044
[6] Domański P., Lindström M., Schlüchtermann G.: Grothendieck operators on tensor products. Proc. Amer. Math. Soc. 125 (1997), 2285-2291. MR 1372028
[7] Geiss S.: Ein Faktorisierungssatz für multilineare Funktionale. Math. Nachr. 134 (1987), 149-159. MR 0918674 | Zbl 0651.46070
[8] González M.: Dual results of factorization for operators. Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3-11. MR 1207890
[9] González M., Gutiérrez J.M.: Factorization of weakly continuous holomorphic mappings. Studia Math. 118 (1996), 117-133. MR 1389759
[10] González M., Gutiérrez J.M.: Injective factorization of holomorphic mappings. Proc. Amer. Math. Soc. 127 (1999), 1715-1721. MR 1610897
[11] González M., Onieva V.M.: Lifting results for sequences in Banach spaces. Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. MR 0966145
[12] Heinrich S.: Closed operator ideals and interpolation. J. Funct. Anal. 35 (1980), 397-411. MR 0563562 | Zbl 0439.47029
[13] Jarchow H.: Weakly compact operators on $C(K)$ and $C^*$-algebras. in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp.263-299. MR 0979519 | Zbl 0757.47020
[14] Jarchow H., Matter U.: On weakly compact operators on $C(K)$-spaces. in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp.80-88. MR 0827762
[15] Lindström M.: On compact and bounding holomorphic mappings. Proc. Amer. Math. Soc. 105 (1989), 356-361. MR 0933517
[16] Mujica J.: Complex Analysis in Banach Spaces. Math. Studies 120, North-Holland, Amsterdam, 1986. MR 0842435 | Zbl 0586.46040
[17] Nachbin L.: Topology on Spaces of Holomorphic Mappings. Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969. MR 0254579 | Zbl 0172.39902
[18] Pietsch A.: Operator Ideals. North-Holland Math. Library 20, North-Holland, Amsterdam, 1980. MR 0582655 | Zbl 1012.47001
[19] Robertson N.: Asplund operators and holomorphic maps. Manuscripta Math. 75 (1992), 25-34. MR 1156212 | Zbl 0805.46044
[20] Ryan R.A.: Weakly compact holomorphic mappings on Banach spaces. Pacific J. Math. 131 (1988), 179-190. MR 0917872 | Zbl 0605.46038
[21] Stephani I.: Generating systems of sets and quotients of surjective operator ideals. Math. Nachr. 99 (1980), 13-27. MR 0637639 | Zbl 0474.47019
[22] Valdivia M.: On a class of Banach spaces. Studia Math. 60 (1977), 11-13. MR 0430755 | Zbl 0354.46012
Partner of
EuDML logo