Previous |  Up |  Next

Article

Title: BGG sequences on spheres (English)
Author: Somberg, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 509-527
.
Category: math
.
Summary: BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called $K$-types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described. (English)
Keyword: BGG sequences
Keyword: invariant differential operators
Keyword: branching rules
Keyword: $K$-types
Keyword: complexes
Keyword: homogeneous spaces
MSC: 22E30
MSC: 22E46
MSC: 35P15
MSC: 43A85
idZBL: Zbl 1037.43016
idMR: MR1795082
.
Date available: 2009-01-08T19:04:42Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119186
.
Reference: [1] Baston R.J.: Almost Hermitean Symmetric Manifolds I. Local twistor theory.Duke Math. J. 63 1 (1991). MR 1106939
Reference: [2] Baston R.J.: Almost Hermitean Symmetric manifolds II. Differential invariants.Duke Math. J. . 63 1 (1991). MR 1106940
Reference: [3] Baston R.J., Eastwood M.G.: The Penrose Transform - its Interaction with Representation Theory.Oxford University Press, New York, 1989. Zbl 0726.58004, MR 1038279
Reference: [4] Bernstein I.N., Gelfand I.M., Gelfand S.I.: Structure of representations generated by vectors of highest weight.Funct. Anal. Appl. 5 (1971), 1-8. MR 0291204
Reference: [5] Branson T.: Stein-Weiss operators and ellipticity.J. Funct. Anal. 151 (1997), 334-383. Zbl 0904.58054, MR 1491546
Reference: [6] Branson T.: Spectra of self-gradients on spheres, preprint, University of Iowa, August 1998.. MR 1718236
Reference: [7] Branson T., Olafsson G., Ørsted B.: Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup.J. Funct. Anal. 135 (1996), 163-205. MR 1367629
Reference: [8] Bureš J.: Special invariant operators I..ESI preprint 192 (1995). MR 1396170
Reference: [9] Čap A., Slovák J., Souček V.: Invariant operators with almost hermitean symmetric structures, III. Standard operators.to be published.
Reference: [10] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences.to be published.
Reference: [11] Delanghe R., Souček V.: On the structure of spinor-valued differential forms.Complex Variables 18 (1992), 223-236. MR 1157930
Reference: [12] Eastwood M.G.: On the weights of conformally invariant operators.Twistor Newsl. 24 (1987), 20-23.
Reference: [13] Eastwood M.G.: Notes on conformal differential geometry.Proc. of Winter School, Srní, in Suppl. Rend. Circ. Mat. di Palermo, ser. II, 43 (1996), 57-76. Zbl 0911.53020, MR 1463509
Reference: [14] Fegan H.D.: Conformally invariant first order differential operators.Quart. J. Math. 27 (1976), 371-378. Zbl 0334.58016, MR 0482879
Reference: [15] Fulton W.: Algebraic topology.Graduate Texts in Mathematics, Springer-Verlag, 1995. Zbl 0852.55001, MR 1343250
Reference: [16] Fulton W., Harris J.: Representation theory.Graduate texts in Mathematics 129, Springer-Verlag, 1991. Zbl 0744.22001, MR 1153249
Reference: [17] Jakobsen H.P.: Conformal invariants.Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. MR 0849262
Reference: [18] Jakobsen H.P., Vergne M.: Wave and Dirac operators and representations of conformal group.J. Funct. Anal. 24 (1977), 52-106. MR 0439995
Reference: [19] Knapp A.: Lie Groups - Beyond an Introduction.Birkhäuser, 1996. Zbl 1075.22501, MR 1399083
Reference: [20] Knapp A.: Representation theory of semisimple groups, an overview based on examples.Princeton Mathematical Series 36, 1985. Zbl 0993.22001, MR 0855239
Reference: [21] Slovák J.: Natural operators on conformal manifolds.Dissertation Thesis, Brno, 1993. MR 1255551
Reference: [22] Souček V.: Conformal invariance of higher spin equations.in Proc. of Symp. `Analytical and Numerical Methods in Clifford Analysis', Lecture in Seifen, 1996.
Reference: [23] Souček V.: Monogenic forms and the BGG resolution.preprint, Prague, 1998. MR 1845957
Reference: [24] Varadarajan V.S.: Harmonic Analysis on Semisimple Lie Groups.Cambridge University Press, 1986. Zbl 0924.22014
Reference: [25] Verma D.N.: Structure of certain induced representations of complex semisimple Lie algebras.Bull. Amer. Math. Soc. 74 (1968), 160-166. Zbl 0157.07604, MR 0218417
Reference: [26] Wünsch V.: On conformally invariant differential operators.Math. Nachr. 129 (1986), 269-281. MR 0864639
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_9.pdf 269.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo