Title:
|
On very weak solutions of a class of nonlinear elliptic systems (English) |
Author:
|
Carozza, Menita |
Author:
|
Passarelli di Napoli, Antonia |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
493-508 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we prove a regularity result for very weak solutions of equations of the type $- \operatorname{div} A(x,u,Du)=B(x, u,Du)$, where $A$, $B$ grow in the gradient like $t^{p-1}$ and $B(x, u, Du)$ is not in divergence form. Namely we prove that a very weak solution $u\in W^{1,r}$ of our equation belongs to $W^{1,p}$. We also prove global higher integrability for a very weak solution for the Dirichlet problem $$ \cases -\operatorname{div} A(x,u,Du)\,=B(x, u,Du) \quad & \text{in } \Omega , \ u-u_o\in W^{1,r}(\Omega,\Bbb R^m). \endcases $$ (English) |
Keyword:
|
nonlinear elliptic systems |
Keyword:
|
maximal operator theory |
MSC:
|
35B65 |
MSC:
|
35D05 |
MSC:
|
35J50 |
MSC:
|
35J55 |
MSC:
|
35J60 |
MSC:
|
35J99 |
MSC:
|
46E30 |
idZBL:
|
Zbl 1119.35016 |
idMR:
|
MR1795081 |
. |
Date available:
|
2009-01-08T19:04:34Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119185 |
. |
Reference:
|
[AF] Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations.Arch. Rational Mech. Anal. 86 (1984), 125-145. Zbl 0565.49010, MR 0751305 |
Reference:
|
[Do] Dolcini A.: A uniqueness result for very weak solutions of $p$-harmonic type equations.Boll. Un. Mat. Ital., Serie VII X-A (1996), 71-84. Zbl 0854.35047, MR 1386247 |
Reference:
|
[FS] Fiorenza A., Sbordone C.: Existence and uniqueness result for solutions of nonlinear equations with right hand side in $L^1$.Studia Math. 127 (3) (1998), 223-231. MR 1489454 |
Reference:
|
[G] Giaquinta M.: Multiple integrals in the Calculus of variations and nonlinear elliptic systems.Ann. of Math. Stud. 105, Princeton University Press, 1983. Zbl 0516.49003, MR 0717034 |
Reference:
|
[GG] Giaquinta M., Giusti E.: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31-46. Zbl 0494.49031, MR 0666107 |
Reference:
|
[Gi] Giusti E.: Metodi diretti nel Calcolo delle Variazioni.U.M.I., 1984. Zbl 0942.49002 |
Reference:
|
[GIS] Greco L., Iwaniec T., Sbordone C.: Inverting the $p$-harmonic operator.Manuscripta Math. 92 (1997), 249-258. Zbl 0869.35037, MR 1428651 |
Reference:
|
[GLS] Giachetti D., Leonetti F., Schianchi R.: On the regularity of very weak minima.Proc. Royal Soc. Edinburgh 126A (1996), 287-296. Zbl 0851.49026, MR 1386864 |
Reference:
|
[GS] Giachetti D., Schianchi R.: Boundary higher integrability for the gradient of distributional solutions of nonlinear systems.preprint. Zbl 0869.49020, MR 1439029 |
Reference:
|
[GT] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.Springer Verlag, 1982. Zbl 1042.35002 |
Reference:
|
[H] Hedberg L.I.: On certain convolution inequalities.Proc. Amer. Math. Soc. 36 (1972), 505-510. MR 0312232 |
Reference:
|
[I] Iwaniec T.: $p$-harmonic tensors and quasiregular mappings.Ann. of Math. 136 (1992), 589-624. Zbl 0785.30009, MR 1189867 |
Reference:
|
[IS] Iwaniec T., Sbordone C.: Weak minima of variational integrals.J. Reine Angew. Math. 454 (1994), 143-161. Zbl 0802.35016, MR 1288682 |
Reference:
|
[Le] Lewis J.: On very weak solutions of certain elliptic systems.Comm. Partial Differential Equations 18 (1993), 1515-1537. Zbl 0796.35061, MR 1239922 |
Reference:
|
[M1] Moscariello G.: Weak minima and quasiminima of variational integrals.B.U.M.I. 7-11B (1997), 355-364. Zbl 0890.49003, MR 1459284 |
Reference:
|
[M2] Moscariello G.: On weak minima of certain integral functionals.Ann. Polon. Math. LXIX.1 (1998), 37-48. Zbl 0920.49021, MR 1630200 |
Reference:
|
[Mu] Muckenhoupt B.: Weighted norm inequalities for the Hardy Maximal Function.Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384 |
Reference:
|
[S] Sbordone C.: Quasiminima of degenerate functionals with non polynomial growth.Rend. Sen. Mat. Fis. Milano LIX (1989), 173-184. Zbl 0760.49023, MR 1159695 |
Reference:
|
[T] Torchinsky A.: Real variable methods in harmonic analysis.Pure Appl. Math. 123, Academic Press, 1986. Zbl 1097.42002, MR 0869816 |
. |