Previous |  Up |  Next

Article

Title: Cartesian closed hull for (quasi-)metric spaces (revisited) (English)
Author: Nauwelaerts, Mark
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 559-573
.
Category: math
.
Summary: An existing description of the cartesian closed topological hull of $p\text{\bf MET}^\infty$, the category of extended pseudo-metric spaces and nonexpansive maps, is simplified, and as a result, this hull is shown to be a special instance of a ``family'' of cartesian closed topological subconstructs of $pqs\text{\bf MET}^\infty$, the category of extended pseudo-quasi-semi-metric spaces (also known as quasi-distance spaces) and nonexpansive maps. Furthermore, another special instance of this family yields the cartesian closed topological hull of $pq\text{\bf MET}^\infty$, the category of extended pseudo-quasi-metric spaces and nonexpansive maps (which has recently gained interest in theoretical computer science), and this hull is also shown to be a nice generalization of $\text{\bf Prost}$, the category of preordered spaces and relation preserving maps. (English)
Keyword: (extended) pseudo-(quasi-)metric space
Keyword: (quasi-)distance space
Keyword: preordered space
Keyword: demi-(quasi-)metric space
Keyword: cartesian closed topological
Keyword: CCT hull
MSC: 18B99
MSC: 18D15
MSC: 54C35
MSC: 54E99
idZBL: Zbl 1034.18008
idMR: MR1795085
.
Date available: 2009-01-08T19:05:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119189
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Wiley, New York et al., 1990. MR 1051419
Reference: [2] Adámek J., Reiterman J.: Cartesian closed hull for metric spaces.Comment. Math. Univ. Carolinae 31.1 (1990), 1-6. MR 1056163
Reference: [3] Antoine P.: Étude élémentaire d'ensembles structurés.Bull. Soc. Math. Belge XVIII 2 et 4 (1966).
Reference: [4] Bonsangue M.M., van Breugel F., Rutten J.J.M.M.: Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding.Theoretical Computer Science 193 (1998), 1-51. Zbl 0997.54042, MR 1600636
Reference: [5] Bourdaud G.: Espaces d'Antoine et semi-espaces d'Antoine.Cahiers Topol. Géom. Diff. Cat. 16 (1975), 107-133. Zbl 0315.54005, MR 0394529
Reference: [6] Bourdaud G.: Some cartesian closed topological categories of convergence spaces.in: E. Binz and H. Herrlich (eds.), Categorical Topology (Proc. Mannheim 1975), Lecture Notes Math. 540, Springer, Berlin et al., 1976, pp.93-108. Zbl 0332.54004, MR 0493924
Reference: [7] Császár Á.: Fondements de la topologie générale.Pergamon Press, Oxford, 1963.
Reference: [8] Fletcher P., Lindgren W.F.: Quasi-uniform spaces.Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker, New York and Basel, 1982. Zbl 0583.54017, MR 0660063
Reference: [9] Herrlich H.: Topological improvements of categories of structured sets.Topology Appl. 27 (1987), 145-155. Zbl 0632.54008, MR 0911688
Reference: [10] Herrlich H., Nel L.D.: Cartesian closed topological hulls.Proc. Amer. Math. Soc. 62 (1977), 215-222. Zbl 0361.18006, MR 0476831
Reference: [11] Künzi H.P.A.: Quasi-uniform spaces - eleven years later.Topology Proc. 18 (1993), 143-171. MR 1305128
Reference: [12] Künzi H.P.A.: Nonsymmetric topology.Bolyai Society in Mathematical Studies 4, Topology, Szekszárd, 1993, Hungary, (Budapest 1995), pp.303-338. MR 1374814
Reference: [13] Lawvere F.W.: Metric spaces, generalized logic, and closed categories.Rend. Sem. Mat. Fis. Milano 43 (1973), 135-166. MR 0352214
Reference: [14] Lowen E., Lowen R.: A quasitopos containing $CONV$ and $MET$ as full subcategories.Internat. J. Math. & Math. Sci. 11 (1988), 417-438. Zbl 0672.54003, MR 0947271
Reference: [15] Lowen R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad.Oxford Mathematical Monographs, Oxford University Press, 1997. Zbl 0891.54001, MR 1472024
Reference: [16] Lowen-Colebunders E., Lowen R., Nauwelaerts M.: The cartesian closed hull of the category of approach spaces.Cahiers Topol. Géom. Diff. Cat., to appear. Zbl 0999.18006, MR 1876866
Reference: [17] Machado A.: Espaces d'Antoine et pseudo-topologies.Cahiers Topol. Géom. Diff. Cat. 14.3 (1973), 309-327. Zbl 0276.54001, MR 0345054
Reference: [18] Nauwelaerts M.: Some cartesian closed topological constructs of convergence-approach spaces.submitted for publication.
Reference: [19] Nauwelaerts M.: The hulls of the category of uniform approach spaces.submitted for publication.
Reference: [20] Preuß G.: Theory of Topological Structures.Reidel (Kluwer Academic), Dordrecht, 1987. MR 0937052
Reference: [21] Schwarz F., Weck-Schwarz S.: Internal Description of Hulls: A Unifying Approach.Category Theory at Work, H. Herrlich and H.-E. Porst (eds.), Heldermann Verlag, Berlin, 1991, pp.35-45. Zbl 0767.18006, MR 1147917
Reference: [22] Smyth M.B.: Quasi-uniformities: reconciling domains with metric spaces.in Proc. of 3rd Workshop on Mathematical Foundations of Programming Language Semantics, New Orleans, 1987, ed. M. Main, A. Melton, M. Mislove, D. Schmidt, Lecture Notes in Computer Science {bf 298}, Springer-Verlag, Berlin, 1988, pp.236-253. Zbl 0668.54018, MR 0948492
Reference: [23] Smyth M.B.: Totally bounded spaces and compact ordered spaces as domains of computation.in Topology and Category Theory in Computer Science, eds. G.M. Reed, A.W. Roscoe, R.F. Wachter, Clarendon Press, Oxford, 1991, pp.207-229. Zbl 0733.54024, MR 1145776
Reference: [24] Weil A.: Sur les espaces à structure uniforme et sur la topologie générale.Hermann, Paris, 1938. Zbl 0019.18604
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_12.pdf 268.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo