Previous |  Up |  Next

Article

Title: Abstract initiality (English)
Author: Schröder, Lutz
Author: Herrlich, Horst
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 575-583
.
Category: math
.
Summary: We study morphisms that are initial w.r.t. all functors in a given conglomerate. Several results and counterexamples are obtained concerning the relation of such properties to different notions of subobject. E.g., strong monomorphisms are initial w.r.t. all faithful adjoint functors, but not necessarily w.r.t. all faithful monomorphism-preserving functors; morphisms that are initial w.r.t. all faithful monomorphism-preserving functors are monomorphisms, but need not be extremal; and (under weak additional conditions) a morphism is initial w.r.t. all faithful functors that map extremal monomorphisms to monomorphisms iff it is an extremal monomorphism. (English)
Keyword: initial morphism
Keyword: (extremal) monomorphism
Keyword: faithful functor
Keyword: semicategory
MSC: 18A10
MSC: 18A20
MSC: 18A22
MSC: 18B30
idZBL: Zbl 1034.18002
idMR: MR1795086
.
Date available: 2009-01-08T19:05:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119190
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Wiley Interscience New York (1990). MR 1051419
Reference: [2] Bénabou J.: Fibered categories and the foundations of category theory.J. Symb. Logic 50 (1985), 10-37. MR 0780520
Reference: [3] Borceux F.: Handbook of Categorical Algebra 2.Cambridge University Press (1994). Zbl 0843.18001, MR 1313497
Reference: [4] Grothendieck A.: Catégories fibrées et descente.Revêtements étales et groupe fondamental, Séminaire de Géometrie Algébrique du Bois-Marie 1960/61 (SGA 1), Exposé VI, 3rd ed. Institut des Hautes Etudes Scientifiques Paris 1963 reprint Springer Lect. Notes Math. 224 1971 145-194. MR 0354651
Reference: [5] Herrlich H., Strecker G.E.: Category Theory.2nd ed. Heldermann Berlin (1979). Zbl 0437.18001, MR 0571016
Reference: [6] Hong S.S.: Categories in which every monosource is initial.Kyungpook Math. J. 15 (1975), 133-139. MR 0369466
Reference: [7] Klop J.W.: Term rewriting systems.Handbook of Logic in Computer Science, vol. 2 (S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, eds.), Oxford University Press, 1992, pp.1-116. Zbl 1030.68053, MR 1381696
Reference: [8] Schröder L.: Composition graphs and free extensions of categories.German PhD Thesis, University of Bremen Logos Verlag Berlin (1999).
Reference: [9] Schröder L.: Traces of epimorphism classes.J. Pure Appl. Algebra, submitted.
Reference: [10] Schröder L., Herrlich H.: Free adjunction of morphisms.Appl. Cat. Struct., to appear. MR 1799731
Reference: [11] Schröder L., Herrlich H.: Free factorizations.Appl. Cat. Struct., to appear. MR 1866871
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_13.pdf 214.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo