Previous |  Up |  Next

Article

Title: Remark on regularity of weak solutions to the Navier-Stokes equations (English)
Author: Skalák, Zdeněk
Author: Kučera, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 111-117
.
Category: math
.
Summary: Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space $L^2(0,T,W^{1,3}(\varOmega)^3)$ are regular. (English)
Keyword: Navier-Stokes equations
Keyword: weak solution
Keyword: regularity
MSC: 35D10
MSC: 35Q10
MSC: 35Q30
MSC: 76D03
MSC: 76D05
MSC: 76F99
idZBL: Zbl 1038.35061
idMR: MR1825376
.
Date available: 2009-01-08T19:08:42Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119227
.
Reference: [1] Giga Y.: Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system.J. Differential Equations 62 (1986), 182-212. MR 0833416
Reference: [2] Kato T.: Perturbation Theory for Linear Operators.Springer-Verlag, Berlin, Heidelberg, New York 1980. Zbl 0836.47009
Reference: [3] Kozono H.: Uniqueness and regularity of weak solutions to the Navier-Stokes equations.Lecture Notes in Num. and Appl. Anal. 16 (1998), 161-208. Zbl 0941.35065, MR 1616331
Reference: [4] Neustupa J.: Partial regularity of weak solutions to the Navier-Stokes Equations in the class $L^\infty(0,T,L^3(\varOmega))$.J. Math. Fluid Mech. 1 (1999), 1-17. MR 1738173
Reference: [5] Serrin J.: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Rational Mech. Anal. 9 (1962), 187-195. Zbl 0106.18302, MR 0136885
Reference: [6] Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis.North-Holland Publishing Company, Amsterdam, New York, Oxford, 1979. Zbl 0981.35001, MR 0603444
Reference: [7] Temam R.: Navier-Stokes Equations and Nonlinear Functional Analysis.Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, second edition, 1995. Zbl 0833.35110, MR 1318914
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_8.pdf 210.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo