Previous |  Up |  Next

Article

Title: For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center (English)
Author: Veselý, Libor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 153-158
.
Category: math
.
Summary: Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin. (English)
Keyword: renormings
Keyword: non-reflexive Banach spaces
Keyword: Chebyshev centers
MSC: 41A65
MSC: 46B03
MSC: 46B20
idZBL: Zbl 1056.46009
idMR: MR1825379
.
Date available: 2009-01-08T19:08:54Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119230
.
Reference: [DJ] Davis W.J., Johnson W.B.: A renorming of non-reflexive Banach spaces.Israel J. Math. 14 (1973), 353-367. MR 0322481
Reference: [vDS] van Dulst D., Singer I.: On Kadec-Klee norms on Banach spaces.Studia Math. 54 (1976), 205-211. Zbl 0321.46012, MR 0394132
Reference: [Ho] Holmes R.B.: A course in optimization and best approximation.Lecture Notes in Mathematics 257, Springer-Verlag, 1972. MR 0420367
Reference: [Ja] James R.C.: Reflexivity and the supremum of linear functionals.Ann. Math. 66 (1957), 159-169. Zbl 0079.12704, MR 0090019
Reference: [Ko] Konyagin S.V.: A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center.Moscow Univ. Math. Bull. 43 2 (1988), 55-56. MR 0938075
Reference: [Ve] Veselý L.: A geometric proof of a theorem about non-dual renormings.Proc. Amer. Math. Soc. 127 (1999), 2807-2809. MR 1670431
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_11.pdf 187.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo