Previous |  Up |  Next

Article

Title: A class of pairs of weights related to the boundedness of the Fractional Integral Operator between $L^p$ and Lipschitz spaces (English)
Author: Pradolini, Gladis
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 133-152
.
Category: math
.
Summary: In [P] we characterize the pairs of weights for which the fractional integral operator $I_{\gamma}$ of order $\gamma$ from a weighted Lebesgue space into a suitable weighted $BMO$ and Lipschitz integral space is bounded. In this paper we consider other weighted Lipschitz integral spaces that contain those defined in [P], and we obtain results on pairs of weights related to the boundedness of $I_{\gamma}$ acting from weighted Lebesgue spaces into these spaces. Also, we study the properties of those classes of weights and compare them with the classes given in [P]. Then, under additional assumptions on the weights, we obtain necessary and sufficient conditions for the boundedness of $I_{\gamma}$ between $BMO$ and Lipschitz integral spaces. For the boundedness between Lipschitz integral spaces we obtain sufficient conditions. (English)
Keyword: two-weighted inequalities
Keyword: fractional integral
Keyword: weighted Lebesgue spaces
Keyword: \newline weighted Lipschitz spaces
Keyword: weighted BMO spaces.
MSC: 42B25
MSC: 47B38
MSC: 47G10
idZBL: Zbl 1055.42015
idMR: MR1825378
.
Date available: 2009-01-08T19:08:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119229
.
Reference: [CF] Coifman R., Fefferman C.: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241-250. Zbl 0291.44007, MR 0358205
Reference: [HL] Hardy G., Littlewood J.: Some properties of fractional integrals.Math. Z. 27 (1928), 565-606. MR 1544927
Reference: [HSV] Harboure E., Salinas O., Viviani B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces.Trans. Amer. Math. Soc. 349 (1997), 235-255. Zbl 0865.42017, MR 1357395
Reference: [MW1] Muckenhoupt B., Wheeden R.: Weighted norm inequalities for fractional integral.Trans. Amer. Math. Soc. 192 (1974), 261-274. MR 0340523
Reference: [MW2] Muckenhoupt B., Wheeden R.: Weighted bounded mean oscillation and Hilbert transform.Studia Math. T. LIV, pp.221-237, 1976. MR 0399741
Reference: [Pe] Peetre, J.: On the theory of ${\Cal L}_{p,\lambda }$ spaces.J. Funct. Anal. 4 (1969), 71-87.
Reference: [P] Pradolini G.: Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces.to appear in Comment. Math. Polish Acad. Sci. MR 1876717
Reference: [S] Sobolev S.L.: On a theorem in functional analysis.Math. Sb. 4 (46) (1938), 471-497; English transl.: Amer. Math. Soc. Transl. (2) 34 (1963), 39-68.
Reference: [SWe] Stein E., Weiss G.: Fractional integrals on n-dimensional euclidean space.J. Math. Mech. 7 (1958), 503-514; MR 20#4746. Zbl 0082.27201, MR 0098285
Reference: [WZ] Wheeden R., Zygmund A.: Measure and Integral. An Introduction to Real Analysis.Marcel Dekker Inc, 1977. Zbl 0362.26004, MR 0492146
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_10.pdf 278.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo