Previous |  Up |  Next

Article

Title: Pointwise convergence and the Wadge hierarchy (English)
Author: Andretta, Alessandro
Author: Marcone, Alberto
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 159-172
.
Category: math
.
Summary: We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space. (English)
Keyword: Wadge hierarchy
Keyword: function spaces
Keyword: pointwise convergence
MSC: 03E15
MSC: 28A05
MSC: 54C35
MSC: 54H05
idZBL: Zbl 1052.03023
idMR: MR1825380
.
Date available: 2009-01-08T19:08:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119231
.
Reference: [1] Cauty R., Dobrowolski T., Marciszewski W.: A contribution to the topological classification of the spaces $C_p(X)$.Fund. Math. 142 (1993), 269-301. MR 1220554
Reference: [2] Christensen J.P.R.: Topology and Borel Structure.North-Holland, 1974. Zbl 0273.28001, MR 0348724
Reference: [3] Dasgupta A.: Studies in Borel Sets.Ph.D. thesis, University of California at Berkeley, 1994.
Reference: [4] Dijkstra J., Grilliot T., Lutzer D., van Mill J.: Function spaces of low Borel complexity.Proc. Amer. Math. Soc. 94 (1985), 703-710. Zbl 0525.54010, MR 0792287
Reference: [5] Dobrowolski T., Marciszewski W.: Classifications of function spaces with the pointwise topology determined by a countable dense set.Fund. Math. 148 (1995), 35-62. MR 1354937
Reference: [6] Dobrowolski T., Marciszewski W., Mogilski J.: On topological classification of function spaces $C_p(X)$ of low Borel complexity.Trans. Amer. Math. Soc. 328 (1991), 307-324. MR 1065602
Reference: [7] Engelking R.: General Topology.Heldermann, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Kechris A.S.: Classical Descriptive Set Theory.Springer-Verlag, 1995. Zbl 0819.04002, MR 1321597
Reference: [9] Kechris A.S.: On the concept of ${\Pi}^{1}_{1}$-completeness.Proc. Amer. Math. Soc. 125 (1997), 1811-1814. Zbl 0864.03034, MR 1372034
Reference: [10] Kechris A.S., Louveau A., Woodin W.H.: The structure of $\sigma$-ideals of compact sets.Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl 0633.03043, MR 0879573
Reference: [11] Kuratowski K.: Topology, vol. 1.Academic Press, 1966. MR 0217751
Reference: [12] Lutzer D., van Mill J., Pol R.: Descriptive complexity of function spaces.Trans. Amer. Math. Soc. 291 (1985), 121-128. Zbl 0574.54042, MR 0797049
Reference: [13] Marciszewski W.: On analytic and coanalytic function spaces $C_p(X)$.Topology Appl. 50 (1993), 241-248. MR 1227552
Reference: [14] van Mill J.: Infinite-Dimensional Topology.North-Holland, 1989. Zbl 1027.57022, MR 0977744
Reference: [15] Okunev O.: On analyticity in cosmic spaces.Comment. Math. Univ. Carolinae 34 (1993), 185-190. Zbl 0837.54009, MR 1240216
Reference: [16] Wadge W.: Reducibility and Determinateness on the Baire Space.Ph.D. thesis, University of California at Berkeley, 1983.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_12.pdf 268.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo