Previous |  Up |  Next

Article

Title: Divisible effect algebras and interval effect algebras (English)
Author: Pulmannová, Sylvia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 219-236
.
Category: math
.
Summary: It is shown that divisible effect algebras are in one-to-one correspondence with unit intervals in partially ordered rational vector spaces. (English)
Keyword: effect algebras
Keyword: divisible effect algebras
Keyword: words
Keyword: po-groups
MSC: 03G12
MSC: 06F15
MSC: 46N50
MSC: 81P10
idZBL: Zbl 1052.03040
idMR: MR1832142
.
Date available: 2009-01-08T19:09:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119238
.
Reference: [1] Baer R.: Free sums of groups and their generalizations. An analysis of the associative law.Amer. J. Math. 41 (1949), 706-742. Zbl 0033.34504, MR 0030953
Reference: [2] Bennett M.K., Foulis D.J.: Interval and scale effect algebras.Adv. in Appl. Math. 19 (1997), 200-215. Zbl 0883.03048, MR 1459498
Reference: [3] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés.Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653
Reference: [4] Bugajski S.: Fundamentals of fuzzy probability theory.Internat. J. Theoret. Phys. 35 (1996), 2229-2244. Zbl 0872.60003, MR 1423402
Reference: [5] Bush P., Grabowski M., Lahti P.: Operational Quantum Physics.Springer-Verlag, Berlin, 1995. MR 1356220
Reference: [6] Cignoli R., D'Ottaviano I.M.L., Mundici D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Academic Publ., Dordrecht 2000. Zbl 0937.06009, MR 1786097
Reference: [7] Dalla Chiara M.L., Giuntini R.: Quantum logic.in Handbook of Philosophical logic, Eds. D. Gabbay, F. Guenthner, Kluwer Acad. Publ., Dordrecht, to appear. Zbl 0969.03070, MR 1818789
Reference: [8] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, 2000. MR 1861369
Reference: [9] Dvurečenskij A., Riečan B.: Weakly divisible MV-algebras and product.J. Math. Anal. Appl. 234 (1999), 208-222. MR 1694841
Reference: [10] Foulis D.J., Bennett M.K.: Effect algebras and unsharp quantum logics.Found. Phys. 37 (1994), 1325-1346. MR 1304942
Reference: [11] Foulis D.J., Greechie R.J., Bennett M.K.: Sums and products of interval effect algebras.Internat. J. Theoret. Phys. 33 (1994), 2119-2136. MR 1311152
Reference: [12] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford-London-New York-Paris, 1963. Zbl 0137.02001, MR 0171864
Reference: [13] Goodearl K.R.: Partially Ordered Abelian Groups with Interpolation.Math. Surveys and Monographs No 20, Amer. Math. Soc., Providence, Rhode Island, 1986. Zbl 0589.06008, MR 0845783
Reference: [14] Gudder S., Pulmannová S.: Representation theorem for convex effect algebras.Comment. Math. Univ. Carolinae 39 (1998), 645-659. MR 1715455
Reference: [15] Gudder S.P. et all.: Convex and linear effect algebras.Rep. Math. Phys. 44 (???), 359-379. Zbl 0956.46002, MR 1737384
Reference: [16] Kôpka F., Chovanec F.: D-posets.Math. Slovaca 44 (1994), 21-34. MR 1290269
Reference: [17] Ludwig G.: Foundations of Quantum Mechanics.Springer-Verlag, New York, 1983. Zbl 0574.46057, MR 0690770
Reference: [18] Mundici D.: Interpretations of AF C*-algebras in Lukasziewicz sentential calculus.J. Funct. Anal. Appl. 65 (1986), 15-63. MR 0819173
Reference: [19] Pulmannová S.: Effect algebras with the Riesz decomposition property and AF C*-algebras.Found. Phys. 29 (1999), 1389-1400. MR 1739751
Reference: [20] Ravindran K.: On a structure theory of effect algebras.PhD Thesis, Kansas State University, Mahattan Kansas, 1996.
Reference: [21] Wyler O.: Clans.Compositio Math. 17 (1966/67), 172-189. MR 0197368
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_1.pdf 270.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo