Previous |  Up |  Next

Article

Title: Centralizers on semiprime rings (English)
Author: Vukman, Joso
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 237-245
.
Category: math
.
Summary: The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer. (English)
Keyword: prime ring
Keyword: semiprime ring
Keyword: derivation
Keyword: Jordan derivation
Keyword: Jordan triple derivation
Keyword: left (right) centralizer
Keyword: left (right) Jordan centralizer
Keyword: centralizer
MSC: 16A12
MSC: 16A68
MSC: 16A72
MSC: 16N60
MSC: 16W10
MSC: 16W20
idZBL: Zbl 1057.16029
idMR: MR1832143
.
Date available: 2009-01-08T19:09:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119239
.
Reference: [1] Brešar M., Vukman J.: Jordan derivations on prime rings.Bull. Austral. Math. Soc. 37 (1988), 321-322. MR 0943433
Reference: [2] Brešar M.: Jordan derivations on semiprime rings.Proc. Amer. Math. Soc. 104 (1988), 1003-1006. MR 0929422
Reference: [3] Brešar M.: Jordan mappings of semiprime rings.J. Algebra 127 (1989), 218-228. MR 1029414
Reference: [4] Cusack J.: Jordan derivations on rings.Proc. Amer. Math. Soc. 53 (1975), 321-324. Zbl 0327.16020, MR 0399182
Reference: [5] Herstein I.N.: Jordan derivations of prime rings.Proc. Amer. Math. Soc. 8 (1957), 1104-1110. MR 0095864
Reference: [6] Vukman J.: An identity related to centralizers in semiprime rings.Comment. Math. Univ. Carolinae 40 (1999), 447-456. Zbl 1014.16021, MR 1732490
Reference: [7] Zalar B.: On centralizers of semiprime rings.Comment. Math. Univ. Carolinae 32 (1991), 609-614. Zbl 0746.16011, MR 1159807
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_2.pdf 170.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo