Previous |  Up |  Next

Article

Title: Triangularization of some families of operators on locally convex spaces (English)
Author: Kramar, Edvard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 499-506
.
Category: math
.
Summary: Some results concerning triangularization of some operators on locally convex spaces are established. (English)
Keyword: locally convex space
Keyword: triangularization
Keyword: invariant subspace
Keyword: compact operator
Keyword: quasinilpotent operator
MSC: 46A32
MSC: 46H20
MSC: 46H35
MSC: 47A15
MSC: 47B99
MSC: 47L10
idZBL: Zbl 1053.47058
idMR: MR1860238
.
Date available: 2009-01-08T19:12:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119264
.
Reference: [1] Edwards R.E.: Functional Analysis, Theory and Applications.Holt, Reinehart and Winston, New York, 1965. Zbl 0189.12103, MR 0221256
Reference: [2] Floret K., Wloka J.: Einführung in die Theorie der lokalkonvexen Räumen.Springer-Verlag, Berlin, Heidelberg, New York, 1968. MR 0226355
Reference: [3] Grabiner S.: The nilpotency of Banach nil algebras.Proc. Amer. Math. Soc. 21 (1969), 510. Zbl 0174.44602, MR 0236700
Reference: [4] Hadwin D., Nordgren E., Radjabalipour M., Radjavi H., Rosenthal P.: On simultaneous triangularization of collection of operators.Houston J. Math. 17 (1991), 581-602. MR 1147275
Reference: [5] Katavolos A., Radjavi H.: Simultaneous triangulation of operators on a Banach space.J. London Math. Soc. 41 (1990), 547-554. MR 1072047
Reference: [6] Kramar E.: Invariant subspaces for some operators on locally convex spaces.Comment. Math. Univ. Carolinae 38 (1997), 635-644. Zbl 0937.47005, MR 1601676
Reference: [7] Litvinov G.L., Lomonosov V.I.: Density theorems in locally convex spaces and theirs applications (in Russian).Trudi sem. vekt. i tenz. analiza 20 (1981), 210-227. MR 0622018
Reference: [8] Lomonosov V.I.: Invariant subspace of operators commuting with compact operators.Funct. Anal. Appl. 7 (1973), 213-214. MR 0420305
Reference: [9] Ma T.W.: On rank one commutators and triangular representations.Canad. Math. Bull. 29 (1986), 268-273. Zbl 0555.47004, MR 0846703
Reference: [10] Mendoza R.V.: The $(\Gamma , t)$-topology on $L(E,E)$ and the spectrum of a bounded linear operator on a locally convex topological vector space.Bol. Soc. Mat. Mexicana 3 (1997), 151-164. Zbl 0905.46004, MR 1452669
Reference: [11] Radjavi H., Rosenthal P.: From local to global triangularization.J. Funct. Anal. 147 (1997), 443-456. Zbl 0902.47019, MR 1454489
Reference: [12] Ringrose J.R.: Super-diagonal forms for compact linear operators.Proc. London Math. Soc. (3) 12 (1962), 367-384. Zbl 0102.10301, MR 0136998
Reference: [13] Uss P.: Sur les opérateurs bornés dans les espaces localement convexes.Studia Math. 37 (1971), 139-158. Zbl 0212.15901, MR 0303328
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_8.pdf 203.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo