Previous |  Up |  Next

Article

Title: On $\alpha$-normal and $\beta$-normal spaces (English)
Author: Arhangel'skii, A. V.
Author: Ludwig, L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 507-519
.
Category: math
.
Summary: We define two natural normality type properties, $\alpha$-normality and $\beta$-normality, and compare these notions to normality. A natural weakening of Jones Lemma immediately leads to generalizations of some important results on normal spaces. We observe that every $\beta$-normal, pseudocompact space is countably compact, and show that if $X$ is a dense subspace of a product of metrizable spaces, then $X$ is normal if and only if $X$ is $\beta$-normal. All hereditarily separable spaces are $\alpha $-normal. A space is normal if and only if it is $\kappa$-normal and $\beta$-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an $\alpha$-normal, $\kappa $-normal, and not $\beta$-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily $\alpha $-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katětov's theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space $X$ such that no dense subspace of $X$ is $\alpha $-normal (Section 3). (English)
Keyword: normal
Keyword: $\alpha$-normal
Keyword: $\beta$-normal
Keyword: $\kappa$-normal
Keyword: weakly normal
Keyword: extremally disconnected
Keyword: $C_p(X)$
Keyword: Lindelöf
Keyword: compact
Keyword: pseudocompact
Keyword: countably compact
Keyword: hereditarily separable
Keyword: hereditarily $\alpha $-normal
Keyword: property $wD$
Keyword: weakly perfect
Keyword: first countable
MSC: 54D15
MSC: 54D65
MSC: 54G20
idZBL: Zbl 1053.54030
idMR: MR1860239
.
Date available: 2009-01-08T19:12:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119265
.
Reference: [1] Arhangel'skii A.V.: Divisibility and cleavability of spaces.in: W. Gähler, H. Herrlich, G. Preuss, ed-s, Recent Developments in General Topology and its Applications, pp.13-26. Mathematical Research 67, Akademie Verlag, 1992. MR 1219762
Reference: [2] Arhangel'skii A.V.: Some recent advances and open problems in general topology.Uspekhi Mat. Nauk. 52:5 (1997), 45-70; English translation in Russian Math. Surveys 52:5 (1997), 929-953. MR 1490025
Reference: [3] Arhangel'skii A.V.: Topological Function Spaces.Dordrecht; Boston: Kluwer Academic Publishers, 1992. MR 1485266
Reference: [4] Arhangel'skii A.V.: Normality and dense subspaces.to appear in Proc. Amer. Math. Soc. 2001. Zbl 1008.54013, MR 1855647
Reference: [5] Arhangel'skii A.V., Kočinac L.: On a dense $G_{\delta}$-diagonal.Publ. Inst. Math. (Beograd) (N.S.) 47 (61) (1990), 121-126. MR 1103538
Reference: [6] Baturov D.P., HASH(0x9f24c00): Subspaces of function spaces.Vestnik Moskov. Univ. Ser. Mat. Mech. 4 (1987), 66-69. MR 0913076
Reference: [7] Baturov D.P.: Normality in dense subspaces of products.Topology Appl. 36 (1990), 111-116. Zbl 0695.54018, MR 1068164
Reference: [8] Blair R.L.: Spaces in which special sets are z-embedded.Canad. J. Math. 28:4 (1976), 673-690. Zbl 0359.54009, MR 0420542
Reference: [9] Bockstein M.F.: Un theoréme de séparabilité pour les produits topologiques.Fund. Math. 35 (1948), 242-246. Zbl 0032.19103, MR 0027503
Reference: [10] Engelking R.: General Topology.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [11] Heath R.W.: On a question of Ljubiša Kočinac.Publ. Inst. Math. (Beograd) (N.S.) 46 (60) (1989), 193-195. Zbl 0694.54021, MR 1060074
Reference: [12] Jones F.B.: Concerning normal and completely normal spaces.Bull. Amer. Math. Soc. 43 (1937), 671-677. Zbl 0017.42902, MR 1563615
Reference: [13] Jones F.B.: Hereditarily separable, non-completely regular spaces.in: Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), pp.149-152. Lecture Notes in Math. 375, Springer, Berlin, 1974. Zbl 0286.54008, MR 0413044
Reference: [14] Katětov M.: Complete normality of Cartesian products.Fund. Math. 35 (1948), 271-274. MR 0027501
Reference: [15] Kočinac L.: An example of a new class of spaces.Mat. Vesnik 35:2 (1983), 145-150. MR 0741592
Reference: [16] Mycielski J.: $\alpha $-incompactness of $N^\alpha $.Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 12 (1964), 437-438. MR 0211871
Reference: [17] Negrepontis S.: Banach spaces and topology.in: The Handbook of Set Theoretic Topology, North Holland, 1984, pp.1045-1142. Zbl 0832.46005, MR 0776642
Reference: [18] Nyikos P.: Axioms, theorems, and problems related to the Jones lemma.General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), pp.441-449, Academic Press, New York-London, 1981. Zbl 0461.54006, MR 0619071
Reference: [19] Ščepin E.V.: Real functions and spaces that are nearly normal.Siberian Math. J. 13 (1972), 820-829. MR 0326656
Reference: [20] Ščepin E.V.: On topological products, groups, and a new class of spaces more general than metric spaces.Soviet Math. Dokl. 17:1 (1976), 152-155. MR 0405350
Reference: [21] Singal M.K., Shashi Prabha Arya: Almost normal and almost completely regular spaces.Glasnik Mat. Ser. III 5 (25) (1970), 141-152. MR 0275354
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_9.pdf 251.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo