Title:
|
On $\alpha$-normal and $\beta$-normal spaces (English) |
Author:
|
Arhangel'skii, A. V. |
Author:
|
Ludwig, L. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
507-519 |
. |
Category:
|
math |
. |
Summary:
|
We define two natural normality type properties, $\alpha$-normality and $\beta$-normality, and compare these notions to normality. A natural weakening of Jones Lemma immediately leads to generalizations of some important results on normal spaces. We observe that every $\beta$-normal, pseudocompact space is countably compact, and show that if $X$ is a dense subspace of a product of metrizable spaces, then $X$ is normal if and only if $X$ is $\beta$-normal. All hereditarily separable spaces are $\alpha $-normal. A space is normal if and only if it is $\kappa$-normal and $\beta$-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an $\alpha$-normal, $\kappa $-normal, and not $\beta$-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily $\alpha $-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katětov's theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space $X$ such that no dense subspace of $X$ is $\alpha $-normal (Section 3). (English) |
Keyword:
|
normal |
Keyword:
|
$\alpha$-normal |
Keyword:
|
$\beta$-normal |
Keyword:
|
$\kappa$-normal |
Keyword:
|
weakly normal |
Keyword:
|
extremally disconnected |
Keyword:
|
$C_p(X)$ |
Keyword:
|
Lindelöf |
Keyword:
|
compact |
Keyword:
|
pseudocompact |
Keyword:
|
countably compact |
Keyword:
|
hereditarily separable |
Keyword:
|
hereditarily $\alpha $-normal |
Keyword:
|
property $wD$ |
Keyword:
|
weakly perfect |
Keyword:
|
first countable |
MSC:
|
54D15 |
MSC:
|
54D65 |
MSC:
|
54G20 |
idZBL:
|
Zbl 1053.54030 |
idMR:
|
MR1860239 |
. |
Date available:
|
2009-01-08T19:12:16Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119265 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Divisibility and cleavability of spaces.in: W. Gähler, H. Herrlich, G. Preuss, ed-s, Recent Developments in General Topology and its Applications, pp.13-26. Mathematical Research 67, Akademie Verlag, 1992. MR 1219762 |
Reference:
|
[2] Arhangel'skii A.V.: Some recent advances and open problems in general topology.Uspekhi Mat. Nauk. 52:5 (1997), 45-70; English translation in Russian Math. Surveys 52:5 (1997), 929-953. MR 1490025 |
Reference:
|
[3] Arhangel'skii A.V.: Topological Function Spaces.Dordrecht; Boston: Kluwer Academic Publishers, 1992. MR 1485266 |
Reference:
|
[4] Arhangel'skii A.V.: Normality and dense subspaces.to appear in Proc. Amer. Math. Soc. 2001. Zbl 1008.54013, MR 1855647 |
Reference:
|
[5] Arhangel'skii A.V., Kočinac L.: On a dense $G_{\delta}$-diagonal.Publ. Inst. Math. (Beograd) (N.S.) 47 (61) (1990), 121-126. MR 1103538 |
Reference:
|
[6] Baturov D.P., HASH(0x9f24c00): Subspaces of function spaces.Vestnik Moskov. Univ. Ser. Mat. Mech. 4 (1987), 66-69. MR 0913076 |
Reference:
|
[7] Baturov D.P.: Normality in dense subspaces of products.Topology Appl. 36 (1990), 111-116. Zbl 0695.54018, MR 1068164 |
Reference:
|
[8] Blair R.L.: Spaces in which special sets are z-embedded.Canad. J. Math. 28:4 (1976), 673-690. Zbl 0359.54009, MR 0420542 |
Reference:
|
[9] Bockstein M.F.: Un theoréme de séparabilité pour les produits topologiques.Fund. Math. 35 (1948), 242-246. Zbl 0032.19103, MR 0027503 |
Reference:
|
[10] Engelking R.: General Topology.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[11] Heath R.W.: On a question of Ljubiša Kočinac.Publ. Inst. Math. (Beograd) (N.S.) 46 (60) (1989), 193-195. Zbl 0694.54021, MR 1060074 |
Reference:
|
[12] Jones F.B.: Concerning normal and completely normal spaces.Bull. Amer. Math. Soc. 43 (1937), 671-677. Zbl 0017.42902, MR 1563615 |
Reference:
|
[13] Jones F.B.: Hereditarily separable, non-completely regular spaces.in: Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), pp.149-152. Lecture Notes in Math. 375, Springer, Berlin, 1974. Zbl 0286.54008, MR 0413044 |
Reference:
|
[14] Katětov M.: Complete normality of Cartesian products.Fund. Math. 35 (1948), 271-274. MR 0027501 |
Reference:
|
[15] Kočinac L.: An example of a new class of spaces.Mat. Vesnik 35:2 (1983), 145-150. MR 0741592 |
Reference:
|
[16] Mycielski J.: $\alpha $-incompactness of $N^\alpha $.Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 12 (1964), 437-438. MR 0211871 |
Reference:
|
[17] Negrepontis S.: Banach spaces and topology.in: The Handbook of Set Theoretic Topology, North Holland, 1984, pp.1045-1142. Zbl 0832.46005, MR 0776642 |
Reference:
|
[18] Nyikos P.: Axioms, theorems, and problems related to the Jones lemma.General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), pp.441-449, Academic Press, New York-London, 1981. Zbl 0461.54006, MR 0619071 |
Reference:
|
[19] Ščepin E.V.: Real functions and spaces that are nearly normal.Siberian Math. J. 13 (1972), 820-829. MR 0326656 |
Reference:
|
[20] Ščepin E.V.: On topological products, groups, and a new class of spaces more general than metric spaces.Soviet Math. Dokl. 17:1 (1976), 152-155. MR 0405350 |
Reference:
|
[21] Singal M.K., Shashi Prabha Arya: Almost normal and almost completely regular spaces.Glasnik Mat. Ser. III 5 (25) (1970), 141-152. MR 0275354 |
. |