Previous |  Up |  Next

Article

Title: Condensations of Tychonoff universal topological algebras (English)
Author: Hernández, Constancio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 529-533
.
Category: math
.
Summary: Let $(L,\Cal T)$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\Cal T)\leq \tau$ and $\operatorname{nw}(K)\leq\tau $, then there exists a Tychonoff (regular) topology $\Cal T^*\subseteq \Cal T$ such that $w(L,\Cal T^*)\leq\tau$ and $(L,\Cal T^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively. (English)
Keyword: universal algebra
Keyword: paratopological group
Keyword: topological group
MSC: 22A05
MSC: 22D05
MSC: 54C50
MSC: 54H11
idZBL: Zbl 1053.54044
idMR: MR1860241
.
Date available: 2009-01-08T19:15:39Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119267
.
Reference: [1] Arhangel'skiĭA.V.: Cardinal invariants of topological groups: Enbeddings and condensations.Dokl. Akad. Nauk SSSR 247 (1979), 779-782. MR 0553825
Reference: [2] ArkhangelskiĭA.V., Ponomarev V.I.: Fundamentals of General Topology.D. Reidel Publishing Company, 1984. Zbl 0568.54001, MR 0785749
Reference: [3] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Künzi H.A., Romaguera S., Sipacheva O.V.: The Doitchinov completion of a regular paratopological group.Serdica Math. J. 24 (1998), 73-88. MR 1679193
Reference: [5] Shakhmatov D.B.: Condensation of universal topological algebras that preserve continuity of operations and decrease weight.Vestnik Mosk. Univ. 39 (1984), 42-45. MR 0741161
Reference: [6] Shakhmatov D.B.: Factorization of mappings of topological spaces and homomorphisms of topological groups in accordance with weight and dimension ind.J. Math. Sci. 75 (1995), 3 1754-1769. MR 1339205
Reference: [7] Stephenson R.M.: Minimal topological groups.Math. Ann. 19 (1971), 193-195. Zbl 0206.31601, MR 0286934
Reference: [8] Tkačenko M.G.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_11.pdf 188.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo