Title:
|
Countable compactness and $p$-limits (English) |
Author:
|
García-Ferreira, S. |
Author:
|
Tomita, A. H. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
521-527 |
. |
Category:
|
math |
. |
Summary:
|
For $\emptyset \neq M \subseteq \omega^*$, we say that $X$ is quasi $M$-compact, if for every $f: \omega \rightarrow X$ there is $p \in M$ such that $\overline{f}(p) \in X$, where $\overline{f}$ is the Stone-Čech extension of $f$. In this context, a space $X$ is countably compact iff $X$ is quasi $\omega^*$-compact. If $X$ is quasi $M$-compact and $M$ is either finite or countable discrete in $\omega^*$, then all powers of $X$ are countably compact. Assuming $CH$, we give an example of a countable subset $M \subseteq \omega^*$ and a quasi $M$-compact space $X$ whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi $M$-compact space is $p$-compact (= quasi $\{p\}$-compact) for some $p \in \omega^*$, whenever $M \in [\omega^*]^{< {\frak c}}$. We prove that if $\emptyset \notin \{ T_\xi :\, \xi < 2^{{\frak c}} \} \subseteq [\omega^*]^{< 2^{{\frak c}}}$, then there is a countably compact space $X$ that is not quasi $T_\xi$-compact for every $\xi < 2^{{\frak c}}$; hence, if $2^{{\frak c}}$ is regular, then there is a countably compact space $X$ such that $X$ is not quasi $M$-compact for any $M \in [\omega^*]^{< 2^{{\frak c}}}$. We list some open problems. (English) |
Keyword:
|
$p$-limit |
Keyword:
|
$p$-compact |
Keyword:
|
almost $p$-compact |
Keyword:
|
quasi $M$-compact |
Keyword:
|
countably compact |
MSC:
|
54A20 |
MSC:
|
54A35 |
MSC:
|
54B99 |
MSC:
|
54D20 |
MSC:
|
54D30 |
idZBL:
|
Zbl 1053.54003 |
idMR:
|
MR1860240 |
. |
Date available:
|
2009-01-08T19:12:21Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119266 |
. |
Reference:
|
[Be] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[Bl] Blass A.: Near coherence of filters I: Cofinal equivalence of models of arithmetic.Notre Dame J. Formal Logic 27 (1986), 579-591. Zbl 0622.03040, MR 0867002 |
Reference:
|
[BL] Blass A., Laflamme C.: Consistency results about filters and the number of inequivalent growth types.J. Symbolic Logic 54 (1989), 50-56. Zbl 0673.03038, MR 0987321 |
Reference:
|
[BS1] Blass A., Shelah S.: Near coherence of filters III: A simplified consistency proof.to appear. Zbl 0702.03030, MR 1036674 |
Reference:
|
[BS2] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$ and $P_{\aleph_2}$ points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), 213-243. MR 0879489 |
Reference:
|
[Co] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893 |
Reference:
|
[CN] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer-Verlag, Berlin, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[G] Garcia-Ferreira S.: Quasi $M$-compact spaces.Czechoslovak Math. J. 46 (1996), 161-177. Zbl 0914.54019, MR 1371698 |
Reference:
|
[GJ] Gillman L., Jerison M.: Rings of continuous functions.Lectures Notes in Mathematics No. 27, Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[GS] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403-418. Zbl 0288.54020, MR 0380736 |
Reference:
|
[Ku] Kunen K.: Weak $P$-points in $ømega^*$.Colloquia Math. Soc. János Bolyai 23 (1978), North-Holland, Amsterdam, pp.741-749. MR 0588822 |
Reference:
|
[vM] van Mill J.: An introduction to $\beta(ømega)$.in K. Kunen and J.E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.503-567. Zbl 0555.54004, MR 0776630 |
. |