Article
Keywords:
topology of pointwise convergence
Summary:
We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx_{l} C_p(X)$ but $C_p(X\times S) \not\approx_{l} C_p(X)$ where $S = (\{0\}\cup\{\frac{1}{n+1}:n\in\omega \})$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel'skii ([2, Problem 4]).
References:
[1] Arhangel'skii A.V.:
Topological Function Spaces (in Russian). Moskov. Gos. Univ., Moscow, 1989.
MR 1019557
[2] Arhangel'skii A.V.:
Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian). Mat. Sb. 181 (1990), 5 705-718.
MR 1055983
[3] Baars J., Groot J.: On Topological and Linear Equivalence of the Function Spaces. CWI Tract 86, Amsterdam, 1992.
[5] Lutzer D.J., McCoy R.A.:
Category in function spaces. Pacific J. Math. 90 (1980), 145-168.
MR 0599327 |
Zbl 0481.54017
[6] Marciszewski W., van Mill J.:
An example of $t^*_p$-equivalent spaces which are not $t_p$-equivalent. Topology Appl. 85 (1998), 281-285.
MR 1617468 |
Zbl 0918.54013
[8] Pol R.:
Note on decompositions of metric spaces II. Fund. Math. 100 (1978), 129-143.
MR 0494011
[9] Pol R.:
On metrizable $E$ with $C_p(E)\not\equiv C_p(E)\times C_p(E)$. Mathematika 42 (1995), 49-55.
MR 1346671
[10] Stone A.H.:
On $\sigma$-discreteness and Borel isomorphism. Amer. J. Math. 85 (1963), 655-666.
MR 0156789 |
Zbl 0117.40103