Previous |  Up |  Next

Article

Keywords:
topology of pointwise convergence
Summary:
We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx_{l} C_p(X)$ but $C_p(X\times S) \not\approx_{l} C_p(X)$ where $S = (\{0\}\cup\{\frac{1}{n+1}:n\in\omega \})$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel'skii ([2, Problem 4]).
References:
[1] Arhangel'skii A.V.: Topological Function Spaces (in Russian). Moskov. Gos. Univ., Moscow, 1989. MR 1019557
[2] Arhangel'skii A.V.: Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian). Mat. Sb. 181 (1990), 5 705-718. MR 1055983
[3] Baars J., Groot J.: On Topological and Linear Equivalence of the Function Spaces. CWI Tract 86, Amsterdam, 1992.
[4] Jech T.: Set Theory. Academic Press, New York, 1978. MR 0506523 | Zbl 1007.03002
[5] Lutzer D.J., McCoy R.A.: Category in function spaces. Pacific J. Math. 90 (1980), 145-168. MR 0599327 | Zbl 0481.54017
[6] Marciszewski W., van Mill J.: An example of $t^*_p$-equivalent spaces which are not $t_p$-equivalent. Topology Appl. 85 (1998), 281-285. MR 1617468 | Zbl 0918.54013
[7] Oxtoby J.: Cartesian products of Baire spaces. Fund. Math. 49 (1961), 157-166. MR 0140638 | Zbl 0113.16402
[8] Pol R.: Note on decompositions of metric spaces II. Fund. Math. 100 (1978), 129-143. MR 0494011
[9] Pol R.: On metrizable $E$ with $C_p(E)\not\equiv C_p(E)\times C_p(E)$. Mathematika 42 (1995), 49-55. MR 1346671
[10] Stone A.H.: On $\sigma$-discreteness and Borel isomorphism. Amer. J. Math. 85 (1963), 655-666. MR 0156789 | Zbl 0117.40103
Partner of
EuDML logo