Previous |  Up |  Next

Article

Title: An answer to a question of Arhangel'skii (English)
Author: Michalewski, Henryk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 545-550
.
Category: math
.
Summary: We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx_{l} C_p(X)$ but $C_p(X\times S) \not\approx_{l} C_p(X)$ where $S = (\{0\}\cup\{\frac{1}{n+1}:n\in\omega \})$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel'skii ([2, Problem 4]). (English)
Keyword: topology of pointwise convergence
MSC: 46E10
MSC: 54C35
idZBL: Zbl 1053.54025
idMR: MR1860243
.
Date available: 2009-01-08T19:16:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119269
.
Reference: [1] Arhangel'skii A.V.: Topological Function Spaces (in Russian).Moskov. Gos. Univ., Moscow, 1989. MR 1019557
Reference: [2] Arhangel'skii A.V.: Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian).Mat. Sb. 181 (1990), 5 705-718. MR 1055983
Reference: [3] Baars J., Groot J.: On Topological and Linear Equivalence of the Function Spaces.CWI Tract 86, Amsterdam, 1992.
Reference: [4] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523
Reference: [5] Lutzer D.J., McCoy R.A.: Category in function spaces.Pacific J. Math. 90 (1980), 145-168. Zbl 0481.54017, MR 0599327
Reference: [6] Marciszewski W., van Mill J.: An example of $t^*_p$-equivalent spaces which are not $t_p$-equivalent.Topology Appl. 85 (1998), 281-285. Zbl 0918.54013, MR 1617468
Reference: [7] Oxtoby J.: Cartesian products of Baire spaces.Fund. Math. 49 (1961), 157-166. Zbl 0113.16402, MR 0140638
Reference: [8] Pol R.: Note on decompositions of metric spaces II.Fund. Math. 100 (1978), 129-143. MR 0494011
Reference: [9] Pol R.: On metrizable $E$ with $C_p(E)\not\equiv C_p(E)\times C_p(E)$.Mathematika 42 (1995), 49-55. MR 1346671
Reference: [10] Stone A.H.: On $\sigma$-discreteness and Borel isomorphism.Amer. J. Math. 85 (1963), 655-666. Zbl 0117.40103, MR 0156789
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_13.pdf 191.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo