Title:
|
An answer to a question of Arhangel'skii (English) |
Author:
|
Michalewski, Henryk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
545-550 |
. |
Category:
|
math |
. |
Summary:
|
We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx_{l} C_p(X)$ but $C_p(X\times S) \not\approx_{l} C_p(X)$ where $S = (\{0\}\cup\{\frac{1}{n+1}:n\in\omega \})$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel'skii ([2, Problem 4]). (English) |
Keyword:
|
topology of pointwise convergence |
MSC:
|
46E10 |
MSC:
|
54C35 |
idZBL:
|
Zbl 1053.54025 |
idMR:
|
MR1860243 |
. |
Date available:
|
2009-01-08T19:16:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119269 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Topological Function Spaces (in Russian).Moskov. Gos. Univ., Moscow, 1989. MR 1019557 |
Reference:
|
[2] Arhangel'skii A.V.: Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian).Mat. Sb. 181 (1990), 5 705-718. MR 1055983 |
Reference:
|
[3] Baars J., Groot J.: On Topological and Linear Equivalence of the Function Spaces.CWI Tract 86, Amsterdam, 1992. |
Reference:
|
[4] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523 |
Reference:
|
[5] Lutzer D.J., McCoy R.A.: Category in function spaces.Pacific J. Math. 90 (1980), 145-168. Zbl 0481.54017, MR 0599327 |
Reference:
|
[6] Marciszewski W., van Mill J.: An example of $t^*_p$-equivalent spaces which are not $t_p$-equivalent.Topology Appl. 85 (1998), 281-285. Zbl 0918.54013, MR 1617468 |
Reference:
|
[7] Oxtoby J.: Cartesian products of Baire spaces.Fund. Math. 49 (1961), 157-166. Zbl 0113.16402, MR 0140638 |
Reference:
|
[8] Pol R.: Note on decompositions of metric spaces II.Fund. Math. 100 (1978), 129-143. MR 0494011 |
Reference:
|
[9] Pol R.: On metrizable $E$ with $C_p(E)\not\equiv C_p(E)\times C_p(E)$.Mathematika 42 (1995), 49-55. MR 1346671 |
Reference:
|
[10] Stone A.H.: On $\sigma$-discreteness and Borel isomorphism.Amer. J. Math. 85 (1963), 655-666. Zbl 0117.40103, MR 0156789 |
. |