Previous |  Up |  Next

Article

Title: Lipschitz-quotients and the Kunen-Martin Theorem (English)
Author: Dutrieux, Yves
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 641-648
.
Category: math
.
Summary: We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory. (English)
Keyword: Lipschitz equivalences
Keyword: Szenk index
MSC: 03E15
MSC: 46B20
idZBL: Zbl 1069.03035
idMR: MR1883373
.
Date available: 2009-01-08T19:17:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119280
.
Reference: [1] Godefroy N.J., Kalton G., Lancien G.: Szlenk indices and uniform homeomorphisms.Trans. Amer. Math. Soc. (2000), to appear. Zbl 0981.46007, MR 1837213
Reference: [2] Bates W., Johnson J., Lindenstrauss D., Preiss G., Schechtman S.: Affine approximation of Lipschitz functions and nonlinear quotients.Geom. Funct. Anal. (1999), 6 1092-1127. Zbl 0954.46014, MR 1736929
Reference: [3] Bossard B.: Théorie descriptive des ensembles en géométrie des espaces de Banach.Thèse de doctorat de l'Université Paris VI, (in French), 1994.
Reference: [4] Lancien G.: On the Szlenk index and the weak*-dentability index.Quart. J. Math. Oxford (2) (1996), 47 59-71. Zbl 0973.46014, MR 1380950
Reference: [5] Kechris A., Louveau A.: Descriptive set theory and the structure of sets of uniqueness.London Math. Soc. Lecture Note Series (1987), 128. Zbl 0642.42014
Reference: [6] Heinrich P., Mankiewicz S.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces.Studia Math. (1982), 73 225-251. Zbl 0506.46008, MR 0675426
Reference: [7] Bourgain J.: New classes of $\Cal L^p$-spaces.Lecture Notes in Mathematics 889, Springer Verlag, 1981. MR 0639014
Reference: [8] Christensen J.: Topology and Borel structure; descriptive topology and set theory with applications to functional analysis and measure theory.North-Holland Math. Stud. (1974), 10. Zbl 0273.28001, MR 0348724
Reference: [9] Bossard B.: Codages des espaces de Banach séparables; familles analytiques et coanalytiques d'espaces de Banach.C.R. Acad. Sci. Paris, Série I, 316 (1993), 1005-1010. MR 1222962
Reference: [10] Benyamini J., Lindenstrauss Y.: Geometric nonlinear functional analysis vol. I.AMS Colloquium Publications (2000), 48.
Reference: [11] Godefroy N., Kalton G., Lancien G.: Subspaces of $c_0(\Bbb N)$ and Lipschitz isomorphisms.Geom. Funct. Anal. (2000), to appear.
Reference: [12] Ribe M: Existence of separable uniformly homeomorphic non isomorphic Banach spaces.Israel J. Math. (1984), 48 139-147. MR 0770696
Reference: [13] Bessaga A., Pełczyński C.: Spaces of continuous functions (IV).Studia Math. (1960), 19 53-62. Zbl 0094.30303, MR 0113132
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_5.pdf 211.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo