Previous |  Up |  Next

Article

Title: The lattice copies of $\ell_1$ in Banach lattices (English)
Author: Wójtowicz, Marek
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 649-653
.
Category: math
.
Summary: It is known that a Banach lattice with order continuous norm contains a copy of $\ell_1$ if and only if it contains a lattice copy of $\ell_1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell_{\infty}$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg. (English)
Keyword: Banach lattice
Keyword: order continuous norm
Keyword: embedding of $\ell_1$
MSC: 46B42
MSC: 46B45
idZBL: Zbl 1090.46503
idMR: MR1883374
.
Date available: 2009-01-08T19:17:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119281
.
Reference: [1] Abramovich Y.A., Lozanovskii G.Ya.: On some numerical characterizations of KN-lineals (Russian).Mat. Zametki 14 (1973), 723-732; Transl.: Math. Notes 14 (1973), 973-978. MR 0338727
Reference: [2] Abramovich Y.A., Wickstead A.W.: Remarkable classes of unital AM-spaces.J. Math. Anal. Appl. 180 (1993), 398-411. Zbl 0792.46004, MR 1251867
Reference: [3] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, New York, 1985. Zbl 1098.47001, MR 0809372
Reference: [4] Diaz J.C.: On a three-space problem: noncontainment of $\ell_p$, $1\le p<\infty$, or $c_0$-subspaces.Publ. Mat. (Barcelona) 37 (1993), 127-132. MR 1240928
Reference: [5] Diestel J.: A survey of results related to the Dunford-Pettis property.Contemporary Math. 2 (1980), 15-60. Zbl 0571.46013, MR 0621850
Reference: [6] Drewnowski L., Labuda I.: Copies of $c_0$ and $\ell_{\infty}$ in topological Riesz spaces.Trans. Amer. Math. Soc. 350 (1998), 3555-3570. Zbl 0903.46010, MR 1466947
Reference: [7] Kühn B.: Banachverbände mit ordungsstetiger Dualnorm.Math. Z. 167 (1979), 271-277. MR 0539109
Reference: [8] Lindenstrauss J.: Weakly compact sets - their topological properties and the Banach spaces they generate.Proc. Symp. Infinite Dim. Topology 1967, Annals Math. Studies, Princeton Univ. Press, 1972. Zbl 0232.46019, MR 0417761
Reference: [9] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I, Sequence Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0362.46013, MR 0500056
Reference: [10] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II, Function Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0403.46022, MR 0540367
Reference: [11] Lozanovskii G.Ya.: On one result of Shimogaki (in Russian).Theses of Second Conference of the Pedagogical Institutes of Nord-West Region Devoted to Mathematics and Methods of its Teaching, Leningrad, 1970, 43.
Reference: [12] Meyer-Nieberg P.: Banach Lattices.Springer-Verlag, Berlin-Heidelberg-New York, 1991. Zbl 0743.46015, MR 1128093
Reference: [13] de Pagter B., Wnuk W.: Some remarks on Banach lattices with non-atomic duals.Indag. Math. (N.S.) 1 (1990), 391-395. Zbl 0731.46008, MR 1075887
Reference: [14] Polyrakis I.: Lattice-subspaces of $C[0,1]$ and positive bases.J. Math. Anal. Appl. 184 (1994), 1-18. Zbl 0802.46035, MR 1275938
Reference: [15] Wnuk W.: Locally solid Riesz spaces not containing $c_0$.Bull. Polish Acad. Sci. Math. 36 (1988), 51-55. MR 0998207
Reference: [16] Wnuk W.: Banach Lattices with Order Continuous Norm.Polish Scientific Publishers, Warszawa, 1999.
Reference: [17] Wójtowicz M.: The Sobczyk property and copies of $\ell_{\infty}$ in locally convex-solid Riesz spaces.Arch. Math. 75 (2000), 376-379. MR 1785446
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_6.pdf 187.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo