Previous |  Up |  Next

Article

Title: Structure of the kernel of higher spin Dirac operators (English)
Author: Plechšmíd, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 665-680
.
Category: math
.
Summary: Polynomials on $\Bbb R^n$ with values in an irreducible $\operatorname{Spin}_n$-module form a natural representation space for the group $\operatorname{Spin}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\Bbb R^n$ with values in these modules. (English)
Keyword: conformally invariant differential operators
Keyword: generalized (higher-spin) Dirac operators
Keyword: representations of spin-groups
Keyword: Littlewood-Richardson rule
MSC: 32A50
MSC: 43A65
MSC: 53A30
MSC: 53A55
MSC: 53C27
idZBL: Zbl 1090.53502
idMR: MR1883376
.
Date available: 2009-01-08T19:17:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119283
.
Reference: [1] Branson T.: Stein-Weiss operators and ellipticity.J. Funct. Anal. 151 (1997), 334-383. Zbl 0904.58054, MR 1491546
Reference: [2] Bernardes G., Sommen F.: Monogenic functions of higher spin by Cauchy-Kowalevska extension of real-analytic functions.Complex Variables Theory Appl. 39 (1999), 4 305-325. MR 1727626
Reference: [3] Bureš J.: Special invariant operators.Comment. Math. Univ. Carolinae 37 (1996), 1 179-198. MR 1396170
Reference: [4] Bureš J.: The higher spin Dirac operators.Proc. Conf. Diff. Geometry and its Applications, 1998, pp.319-334. MR 1708920
Reference: [5] Bureš J.: The Rarita-Schwinger equation and spherical monogenic forms.Complex Variables Theory Appl. 43 (2000), 77-108. MR 1809813
Reference: [6] Bureš J.: Monogenic forms of the polynomial type.2000, accepted in Proc. Conf. Clifford Anal. and its Appl., Prague, 2000. MR 1890434
Reference: [7] Bureš J., Souček V.: Eigenvalues of conformally invariant operators on spheres.Proc. 18th Winter School Geom. and Phys., Serie II., Suppl. 59, 1999, pp.109-122. MR 1692262
Reference: [8] Bureš J., Souček V., Sommen F., Van Lancker P.: Symmetric analogues of Rarita-Schwinger equations.2000, accepted in Annals of Global Analysis and Geometry, Kluwer Publ.
Reference: [9] Bureš J., Souček V., Sommen F., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis.2000, accepted in J. Funct. Analysis.
Reference: [10] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with AHS structures, I.,II..Acta Math. Univ. Comenianae 66 (1997), 33-69, 203-220.
Reference: [11] Fegan H.D.: Conformally invariant first order differential operators.Quart. J. Math. 27 (1976), 371-378. Zbl 0334.58016, MR 0482879
Reference: [12] Fulton W., Harris J.: Representation Theory.Springer-Verlag, 1991. Zbl 0744.22001, MR 1153249
Reference: [13] Homma Y.: The higher spin Dirac operators on $3$-dimensional manifolds.preprint arXiv:math.DG/0006210. Zbl 1021.53026, MR 1874992
Reference: [14] Homma Y.: Spinor-valued and Clifford algebra-valued harmonic polynomials.submitted to Geometry and Physics. Zbl 0972.43005
Reference: [15] Lawson H.B. jr., Michelson M.L.: Spin Geometry.Princeton University Press, 1989. MR 1031992
Reference: [16] Littelmann P.: A generalization of the Littlewood-Richardson rule.J. Algebra 130 (1990), 2 328-368. Zbl 0704.20033, MR 1051307
Reference: [17] Morrey C.B. jr., Nirenberg L.: On the analycity of the solutions of linear elliptic systems of PDEs.Com. Pure Appl. Math. 10 (1957), 271-290. MR 0089334
Reference: [18] Samelson H.: Notes on Lie algebras.Van Nostrand Reinhold Mathematical Studies, 1969. Zbl 0708.17005, MR 0254112
Reference: [19] Severa V.: Invariant differential operators on Spinor-valued differential forms.Dissertation, Charles University, Prague, 1998.
Reference: [20] Slovák J.: Invariant operators on conformal manifolds.Research Lecture Notes, University of Vienna, 1992.
Reference: [21] Slovák J.: Parabolic Geometries.DrSc Dissertation, Masaryk University Brno, 1998.
Reference: [22] Plechšmíd M.: Polynomial solutions for a class of higher spin equations.Dissertation, Charles University, Prague, 2001.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_8.pdf 273.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo