Title:
|
Structure of the kernel of higher spin Dirac operators (English) |
Author:
|
Plechšmíd, Martin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
665-680 |
. |
Category:
|
math |
. |
Summary:
|
Polynomials on $\Bbb R^n$ with values in an irreducible $\operatorname{Spin}_n$-module form a natural representation space for the group $\operatorname{Spin}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\Bbb R^n$ with values in these modules. (English) |
Keyword:
|
conformally invariant differential operators |
Keyword:
|
generalized (higher-spin) Dirac operators |
Keyword:
|
representations of spin-groups |
Keyword:
|
Littlewood-Richardson rule |
MSC:
|
32A50 |
MSC:
|
43A65 |
MSC:
|
53A30 |
MSC:
|
53A55 |
MSC:
|
53C27 |
idZBL:
|
Zbl 1090.53502 |
idMR:
|
MR1883376 |
. |
Date available:
|
2009-01-08T19:17:35Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119283 |
. |
Reference:
|
[1] Branson T.: Stein-Weiss operators and ellipticity.J. Funct. Anal. 151 (1997), 334-383. Zbl 0904.58054, MR 1491546 |
Reference:
|
[2] Bernardes G., Sommen F.: Monogenic functions of higher spin by Cauchy-Kowalevska extension of real-analytic functions.Complex Variables Theory Appl. 39 (1999), 4 305-325. MR 1727626 |
Reference:
|
[3] Bureš J.: Special invariant operators.Comment. Math. Univ. Carolinae 37 (1996), 1 179-198. MR 1396170 |
Reference:
|
[4] Bureš J.: The higher spin Dirac operators.Proc. Conf. Diff. Geometry and its Applications, 1998, pp.319-334. MR 1708920 |
Reference:
|
[5] Bureš J.: The Rarita-Schwinger equation and spherical monogenic forms.Complex Variables Theory Appl. 43 (2000), 77-108. MR 1809813 |
Reference:
|
[6] Bureš J.: Monogenic forms of the polynomial type.2000, accepted in Proc. Conf. Clifford Anal. and its Appl., Prague, 2000. MR 1890434 |
Reference:
|
[7] Bureš J., Souček V.: Eigenvalues of conformally invariant operators on spheres.Proc. 18th Winter School Geom. and Phys., Serie II., Suppl. 59, 1999, pp.109-122. MR 1692262 |
Reference:
|
[8] Bureš J., Souček V., Sommen F., Van Lancker P.: Symmetric analogues of Rarita-Schwinger equations.2000, accepted in Annals of Global Analysis and Geometry, Kluwer Publ. |
Reference:
|
[9] Bureš J., Souček V., Sommen F., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis.2000, accepted in J. Funct. Analysis. |
Reference:
|
[10] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with AHS structures, I.,II..Acta Math. Univ. Comenianae 66 (1997), 33-69, 203-220. |
Reference:
|
[11] Fegan H.D.: Conformally invariant first order differential operators.Quart. J. Math. 27 (1976), 371-378. Zbl 0334.58016, MR 0482879 |
Reference:
|
[12] Fulton W., Harris J.: Representation Theory.Springer-Verlag, 1991. Zbl 0744.22001, MR 1153249 |
Reference:
|
[13] Homma Y.: The higher spin Dirac operators on $3$-dimensional manifolds.preprint arXiv:math.DG/0006210. Zbl 1021.53026, MR 1874992 |
Reference:
|
[14] Homma Y.: Spinor-valued and Clifford algebra-valued harmonic polynomials.submitted to Geometry and Physics. Zbl 0972.43005 |
Reference:
|
[15] Lawson H.B. jr., Michelson M.L.: Spin Geometry.Princeton University Press, 1989. MR 1031992 |
Reference:
|
[16] Littelmann P.: A generalization of the Littlewood-Richardson rule.J. Algebra 130 (1990), 2 328-368. Zbl 0704.20033, MR 1051307 |
Reference:
|
[17] Morrey C.B. jr., Nirenberg L.: On the analycity of the solutions of linear elliptic systems of PDEs.Com. Pure Appl. Math. 10 (1957), 271-290. MR 0089334 |
Reference:
|
[18] Samelson H.: Notes on Lie algebras.Van Nostrand Reinhold Mathematical Studies, 1969. Zbl 0708.17005, MR 0254112 |
Reference:
|
[19] Severa V.: Invariant differential operators on Spinor-valued differential forms.Dissertation, Charles University, Prague, 1998. |
Reference:
|
[20] Slovák J.: Invariant operators on conformal manifolds.Research Lecture Notes, University of Vienna, 1992. |
Reference:
|
[21] Slovák J.: Parabolic Geometries.DrSc Dissertation, Masaryk University Brno, 1998. |
Reference:
|
[22] Plechšmíd M.: Polynomial solutions for a class of higher spin equations.Dissertation, Charles University, Prague, 2001. |
. |