Previous |  Up |  Next

Article

Title: Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$ (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 655-663
.
Category: math
.
Summary: Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved. (English)
Keyword: bundle functors
Keyword: natural transformations
Keyword: natural affinors
MSC: 53A55
MSC: 58A20
idZBL: Zbl 1090.58501
idMR: MR1883375
.
Date available: 2009-01-08T19:17:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119282
.
Reference: [1] Doupovec M., Kolář I.: Natural affinors on time-dependent Weil bundles.Arch. Math. Brno 27 (1991), 205-209. MR 1189217
Reference: [2] Gancarzewicz J., Kolář I.: Natural affinors on the extended $r$-th order tangent bundles.Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100. MR 1246623
Reference: [3] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry.Springer-Verlag, Berlin, 1993. MR 1202431
Reference: [4] Kolář I., Mikulski W.M.: Contact elements on fibered manifolds.to appear in Czech Math. J. MR 2018847
Reference: [5] Kolář I., Modugno M.: Torsions of connections on some natural bundles.Differential Geom. Appl. 2 (1992), 1-16. MR 1244453
Reference: [6] Kolář I., Vosmanská G.: Natural transformations of higher order tangent bundles and jet spaces.Čas. pěst. mat. 114 (1989), 181-185. MR 1063764
Reference: [7] Kurek J.: Natural affinors on higher order cotangent bundles.Arch. Math. Brno 28 (1992), 175-180. MR 1222284
Reference: [8] Mikulski W.M.: Natural affinors on $r$-jet prolongation of the tangent bundles.Arch. Math. Brno 34(2) (1998), 321-328. MR 1645340
Reference: [9] Mikulski W.M.: Natural affinors on $(J^rT^*)^*$.Arch. Math. Brno 36(4) (2000), 261-267. MR 1811170
Reference: [10] Mikulski W.M.: The natural affinors on $øtimes^kT^{(r)}$.Note di Matematica 19(2) (1999), 269-274. MR 1816880
Reference: [11] Mikulski W.M.: The natural affinors on generalized higher order tangent bundles.to appear. Zbl 1048.58004, MR 1884952
Reference: [12] Zajtz A.: On the order of natural operators and liftings.Ann. Polon. Math. 49 (1988), 169-178. MR 0983220
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_7.pdf 228.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo