Previous |  Up |  Next

Article

Title: Fractional integro-differentiation in harmonic mixed norm spaces on a half-space (English)
Author: Avetisyan, K. L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 691-709
.
Category: math
.
Summary: In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a ``fractional derivative norm'' and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\leq \infty $, $0<q\leq \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces. (English)
Keyword: embedding theorems
Keyword: integral representations
Keyword: conjugation
Keyword: projections
MSC: 26A33
MSC: 31B05
MSC: 31B10
MSC: 31C05
idZBL: Zbl 1090.31500
idMR: MR1883378
.
Date available: 2009-01-08T19:17:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119285
.
Reference: [1] Benedek A., Panzone R.: The spaces $L^P$, with mixed norm.Duke Math. J. 28 (1961), 301-324. MR 0126155
Reference: [2] Bergman S.: Über unendliche Hermitische Formen, die zu einem Bereiche gehören, nebst Anwendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Veränderlichen.Math. Z. 29 (1929), 641-677. MR 1545028
Reference: [3] Bergman S.: The Kernel Function and Conformal Mapping.Math. Surveys, No. 5, New York, 1950. Zbl 0473.30006, MR 0038439
Reference: [4] Bui Huy Qui: Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz.Hiroshima Math. J. 9 (1979), 245-295. MR 0529335
Reference: [5] Djrbashian A.E.: The classes $A_\alpha^p$ of harmonic functions in half-spaces and an analogue of M. Riesz' theorem.Izv. Akad. Nauk Arm. SSR, Matematika 22 4 (1987), 386-398 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 22 (1987), no. 4, 74-85. MR 0931892
Reference: [6] Djrbashian A.E., Karapetyan A.H.: Integral inequalities between conjugate pluriharmonic functions in multidimensional domains.Izv. Akad. Nauk Arm. SSR, Matematika 23 (1988), 3 216-236 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 23 (1988), no. 3, 20-42. MR 0976482
Reference: [7] Djrbashian A.E., Shamoyan F.A.: Topics in the Theory of $A_\alpha^p$ Spaces.Teubner-Texte zur Math., b. 105, Teubner, Leipzig, 1988. MR 1021691
Reference: [8] Djrbashian M.M.: On canonical representation of functions meromorphic in the unit disk.Dokl. Akad. Nauk Arm. SSR 3 (1945), 3-9 (in Russian).
Reference: [9] Djrbashian M.M.: On the representation problem of analytic functions.Soobshch. Inst. Matem. Mekh. Akad. Nauk Arm. SSR 2 (1948), 3-40 (in Russian).
Reference: [10] Djrbashian M.M., Djrbashian A.E.: Integral representation for some classes of functions in a half-plane.Dokl. Akad. Nauk SSSR 285 (1985), 547-550 (in Russian). MR 0821337
Reference: [11] Fefferman C., Stein E.M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. MR 0447953
Reference: [12] Flett T.M.: Mean values of power series.Pacific J. Math. 25 (1968), 463-494. Zbl 0162.10002, MR 0229807
Reference: [13] Flett T.M.: Inequalities for the $p$th mean values of harmonic and subharmonic functions with $p\le 1$.Proc. London Math. Soc. (3) 20 (1970), 249-275. MR 0257387
Reference: [14] Flett T.M.: On the rate of growth of mean values of holomorphic and harmonic functions.Proc. London Math. Soc. (3) 20 (1970), 749-768. Zbl 0211.39203, MR 0268388
Reference: [15] Flett T.M.: The dual of an inequality of Hardy and Littlewood and some related inequalities.J. Math. Anal. Appl. 38 (1972), 746-765. Zbl 0246.30031, MR 0304667
Reference: [16] Holmstedt T.: Interpolation of quasi-normed spaces.Math. Scand. 26 (1970), 177-199. Zbl 0193.08801, MR 0415352
Reference: [17] Ramey W.C., Yi H.: Harmonic Bergman functions on half-spaces.Trans. Amer. Math. Soc. 348 (1996), 633-660. Zbl 0848.31004, MR 1303125
Reference: [18] Ricci F., Taibleson M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure.Annali Scuola Nor. Sup. - Pisa, Ser. IV, 10 (1983), 1-54. Zbl 0527.30040, MR 0713108
Reference: [19] Shamoyan F.A.: Applications of Djrbashian's integral representations to the certain problems of analysis.Dokl. Akad. Nauk SSSR 261 (1981), 3 557-561 (in Russian). MR 0638930
Reference: [20] Shamoyan F.A.: Some remarks on the parametric representation of Nevanlinna-Djrbashian classes.Mat. Zametki 52 (1992), 1 128-140 (in Russian); English transl.: Math. Notes 52 (1993), no. 1-2, 727-737. MR 1187723
Reference: [21] Shi J.H.: Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\Bbb C^n$.Trans. Amer. Math. Soc. 328 (1991), 619-637. MR 1016807
Reference: [22] Stein E.M.: Singular Integrals and Differentiability Properties of Functions.Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl 0281.44003, MR 0290095
Reference: [23] Taibleson M.: On the theory of Lipschitz spaces of distributions on Euclidean $n$-space, I. Principal properties.J. Math. Mech. 13 (1964), 407-479. MR 0163159
Reference: [24] Yi H.: Harmonic little Bloch functions on half-spaces.Math. Japonica 47 (1998), 21-28. Zbl 0924.31003, MR 1606287
Reference: [25] Avetisyan K.L.: Fractional integration and integral representations in weighted classes of harmonic functions.Analysis Math. 26 (2000), 161-174. Zbl 0997.30030, MR 1792883
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_10.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo