Title:
|
On exit laws for semigroups in weak duality (English) |
Author:
|
Bachar, Imed |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
711-719 |
. |
Category:
|
math |
. |
Summary:
|
Let $\Bbb P:=(P_{t})_{t>0}$ be a measurable semigroup and $m$ a $\sigma $-finite positive measure on a Lusin space $X$. An $m$-exit law for $\Bbb P$ is a family $(f_{t})_{t>0}$ of nonnegative measurable functions on $X$ which are finite $m$-a.e. and satisfy for each $s,t >0$ $P_{s}f_{t}=f_{s+t}$ $m$-a.e. An excessive function $u$ is said to be in $\Cal R$ if there exits an $m$-exit law $(f_{t})_{t>0}$ for $\Bbb P$ such that $u=\int_{0}^{\infty }f_{t}\,dt$, $m$-a.e. Let $\Cal P$ be the cone of $m$-purely excessive functions with respect to $\Bbb P$ and $\Cal I mV$ be the cone of $m$-potential functions. It is clear that $\Cal I mV\subseteq \Cal R\subseteq \Cal P$. In this paper we are interested in the converse inclusion. We extend some results already obtained under the assumption of the existence of a reference measure. Also, we give an integral representation of the mutual energy function. (English) |
Keyword:
|
semigroup |
Keyword:
|
weak duality |
Keyword:
|
exit law |
MSC:
|
31D05 |
MSC:
|
60J45 |
idZBL:
|
Zbl 1090.31501 |
idMR:
|
MR1883379 |
. |
Date available:
|
2009-01-08T19:18:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119286 |
. |
Reference:
|
[1] Berg C., Forst G.: Potential theory on locally compact Abellian Groups.Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR 0481057 |
Reference:
|
[2] Boboc N., Bucut G., Cornea A.: Order and Convexity in Potential Theory.Lecture Notes in Math. 853, Springer, Berlin-Heidelberg-New York, 1980. |
Reference:
|
[3] Dellacherie C., Meyer P.A.: Probabilités et Potentiel.Chapter $XII-XVI$, Herman, 1987. Zbl 0624.60084, MR 0488194 |
Reference:
|
[4] Fitzsimmons P.J.: Markov processes and non symmetric Dirichlet forms without regularity.J. Funct. Anal. 85 287-306 (1989). MR 1012207 |
Reference:
|
[5] Fitzsimmons P.J., Getoor R.K.: On the potential theory of symmetric Markov processes.Math. Ann. 281 495-512 (1988). Zbl 0627.60067, MR 0954155 |
Reference:
|
[6] Fukushima M.: Dirichlet Forms and Markov Processes.North-Holland, Amsterdam-Oxford-New York, 1980. Zbl 0422.31007, MR 0569058 |
Reference:
|
[7] Getoor R.K.: Excessive Measures.Birkhäuser Processes, 1990. Zbl 1081.60544, MR 1093669 |
Reference:
|
[8] Getoor R.K., Glover J.: Riesz decomposition in Markov process theory.Trans. Amer. Math. Soc. 285 107-132 (1989). MR 0748833 |
Reference:
|
[9] Getoor R.K., Sharpe M.P.: Naturality standardness and weak duality for Markov processes.Z. Wahrsch verw. Gebiete 67 1-62 (1984). Zbl 0553.60070, MR 0756804 |
Reference:
|
[10] Hmissi M.: Lois de sortie et semi-groupes basiques.Manuscripta Math. 75 293-302 (1992). Zbl 0759.60080, MR 1167135 |
Reference:
|
[11] Hmissi M.: Sur la représentation par les lois de sortie.Math. Z. 213 647-656 (1993). Zbl 0790.31006, MR 1231882 |
Reference:
|
[12] Hmissi M.: On the functional equation of exit laws for lattice semi-groups.Ann. Ecole Normale Superieure de Cracowie 196 63-72 (1998). MR 1826075 |
Reference:
|
[13] Janssen K.: Representation of excessive measures.Sem. Stoch. Processes Birkhäuser, Boston, Mass., 1987, pp.85-105. Zbl 0619.47035, MR 0902428 |
Reference:
|
[14] Silverstein M.: Symmetric Markov Processes.Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974. Zbl 0331.60046, MR 0386032 |
. |