Previous |  Up |  Next

Article

Title: On algebra homomorphisms in complex almost $f$-algebras (English)
Author: Triki, Abdelmajid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 23-31
.
Category: math
.
Summary: Extensions of order bounded linear operators on an Archimedean vector lattice to its relatively uniform completion are considered and are applied to show that the multiplication in an Archimedean lattice ordered algebra can be extended, in a unique way, to its relatively uniform completion. This is applied to show, among other things, that any order bounded algebra homomorphism on a complex Archimedean almost $f$-algebra is a lattice homomorphism. (English)
Keyword: vector lattice
Keyword: order bounded operator
Keyword: lattice ordered algebra
Keyword: $f$-algebra
Keyword: almost $f$-algebra
MSC: 06F20
MSC: 06F25
MSC: 46A40
idZBL: Zbl 1070.06008
idMR: MR1903304
.
Date available: 2009-01-08T19:19:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119297
.
Reference: [1] Beukers F., Huijsmans C.B., Pagter B. de: Unital embedding and complexification of $f$-algebras.Math. Z. 183 131-144 (1983). MR 0701362
Reference: [2] Huijsmans C.B., Pagter, B. de: Averaging operators and positive contractive projections.J. Math. Anal. Appl. 113 163-184 (1986). Zbl 0604.47024, MR 0826666
Reference: [3] Huijsmans C.B., Pagter B. de: Subalgebras and Riesz subspaces of an $f$-algebra.Proc. London Math. Soc. (3) 48 161-174 (1984). Zbl 0534.46010, MR 0721777
Reference: [4] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North Holland, Amsterdam, 1971.
Reference: [5] Nagasawa M.: Isomorphisms between commutative Banach algebras with an application to rings of analytic functions.Kodai Math. Semin. Rep. 11 182-188 (1959). Zbl 0166.40002, MR 0121645
Reference: [6] Quinn J.: Intermediate Riesz spaces.Pacific J. Math. 56 (1975), 225-263. Zbl 0315.06009, MR 0380355
Reference: [7] Schaefer H.H.: Banach Lattices and Positive Operators.Springer, Berlin, 1974. Zbl 0296.47023, MR 0423039
Reference: [8] Scheffold E.: FF-Banachverband algebren.Math. Z. 177 193-205 (1981). MR 0612873
Reference: [9] Zaanen A.C: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_3.pdf 201.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo