Previous |  Up |  Next

Article

Title: On $p$-injectivity, YJ-injectivity and quasi-Frobeniusean rings (English)
Author: Yue Chi Ming, Roger
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 33-42
.
Category: math
.
Summary: A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of $p$-injectivity. Also, a commutative YJ-injective ring with maximum condition on annihilators and finitely generated socle is quasi-Frobeniusean. (English)
Keyword: von Neumann regular
Keyword: $V$-ring
Keyword: Artinian ring
Keyword: $p$-injectivity
Keyword: YJ-injectivity
Keyword: quasi-Frobeniusean
MSC: 16D30
MSC: 16D36
MSC: 16D50
MSC: 16E50
MSC: 16L60
MSC: 16N60
MSC: 16P20
idZBL: Zbl 1068.16004
idMR: MR1903305
.
Date available: 2009-01-08T19:19:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119298
.
Reference: [1] Baccella G.: Generalized $V$-rings and von Neumann regular rings.Rend. Sem. Mat. Univ. Padova 72 (1984), 117-133. Zbl 0547.16006, MR 0778337
Reference: [2] Chase S.U.: Direct product of modules.Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260
Reference: [3] Faith C.: Algebra II: Ring Theory.Grundlehren Math. Wiss. 191 (1976). MR 0427349
Reference: [4] Faith C.: Rings and things and a fine array of twentieth century associative algebra.AMS Math. Survey and Monographs 65 (1999). MR 1657671
Reference: [5] Goodearl K.R.: Von Neumann Regular Rings.Pitman, 1979. Zbl 0841.16008, MR 0533669
Reference: [6] Hirano Y., Tominaga H.: Regular rings, $V$-rings and their generalizations.Hiroshima Math. J. 9 (1979), 137-149. Zbl 0413.16015, MR 0529329
Reference: [7] Hirano Y.: On non-singular $p$-injective rings.Publ. Math. 38 (1994), 455-461. MR 1316640
Reference: [8] Huynh D.V., Dung N.V.: A characterization of Artinian rings.Glasgow Math. J. 30 (1988), 67-73. Zbl 0637.16012, MR 0925560
Reference: [9] Huynh D.V., Dung N.V.: Rings with restricted injective condition.Arch. Math. 54 (1990), 539-548. Zbl 0703.16003, MR 1052974
Reference: [10] Huynh D.V., Dung N.V., Smith P.F., Wisbauer R.: Extending Modules.Pitman, London, 1994. Zbl 0841.16001
Reference: [11] Mohamed S.H., Mueller B.J.: Continous and discrete modules.LMS Lecture Note 47 (C.U.P.), 1990.
Reference: [12] Puninski G., Wisbauer R., Yousif M.F.: On $p$-injective rings.Glasgow Math. J. 37 (1995), 373-378. Zbl 0847.16005, MR 1355393
Reference: [13] Wang Ding Guo: Rings chracterized by injectivity classes.Comm. Algebra 24 (1996), 717-726. MR 1373501
Reference: [14] Wisbauer R.: Foundations of Module and Ring Theory.Gordon and Breach, New-York, 1991. Zbl 0746.16001, MR 1144522
Reference: [15] Xue Wei Min: A note on ${YJ}$-injectivity.Riv. Mat. Univ. Parma (6) 1 (1998), 31-37. MR 1680954
Reference: [16] Xue Wei Min: Rings related to quasi-Frobenius rings.Algebra Colloq. 5 (1998), 471-480. MR 1683093
Reference: [17] Yue Chi Ming R.: On von Neumann regular rings.Proc. Edinburgh Math. Soc. 19 (1974), 89-91. MR 0342553
Reference: [18] Yue Chi Ming R.: On simple $p$-injective modules.Math. Japonica 19 (1974), 173-176. Zbl 0263.16019, MR 0399167
Reference: [19] Yue Chi Ming R.: On regular rings and continuous rings.Math. Japonica 24 (1979), 563-571. MR 0565541
Reference: [20] Yue Chi Ming R.: On $V$-rings and prime rings.J. Algebra 62 (1980), 13-20. Zbl 0429.16018, MR 0561114
Reference: [21] Yue Chi Ming R.: On regular rings and Artinian rings.Riv. Mat. Univ. Parma (4) 8 (1982), 443-452. Zbl 0516.16006, MR 0706868
Reference: [22] Yue Chi Ming R.: On von Neumann regular rings, X.Collectanea Math. 34 (1983), 81-94. Zbl 0544.16006, MR 0747858
Reference: [23] Yue Chi Ming R.: On regular rings and continuous rings, III.Annali di Matematica 138 (1984), 245-253. Zbl 0558.16004, MR 0779545
Reference: [24] Yue Chi Ming R.: On regular rings and Artinian rings, II.Riv. Mat. Univ. Parma (4) 11 (1985), 101-109. Zbl 0611.16011, MR 0851520
Reference: [25] Yue Chi Ming R.: On von Neumann regular rings, XV.Acta Math. Vietnamica 13 2 (1988), 71-79. Zbl 0685.16009, MR 1023706
Reference: [26] Yue Chi Ming R.: On $V$-rings, $p$-$V$-rings and injectivity.Kyungpook Math. J. 32 (1992), 219-228. Zbl 0786.16008, MR 1203937
Reference: [27] Yue Chi Ming R.: On self-injectivity and regularity.Rend. Sem. Fac. Sci. Univ. Cagliari 64 (1994), 9-24. Zbl 0870.16003, MR 1356180
Reference: [28] Zhang Jule: Fully idempotent rings whose every maximal left ideal is an ideal.Chinese Sci. Bull. 37 (1992), 1065-1068. MR 1321903
Reference: [29] Zhang Jule: A note on von Neumann regular rings.Southeast Asian Bull. Math. 22 (1998), 231-235. Zbl 0923.16011, MR 1684237
Reference: [30] Zhang Jule, Wu Jun: Generalizations of principal injectivity.Algebra Colloq. 6 (1999), 277-282. Zbl 0949.16002, MR 1809647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_4.pdf 210.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo