Previous |  Up |  Next

Article

Title: An example of a $\Cal C^{1,1}$ function, which is not a d.c. function (English)
Author: Zelený, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 149-154
.
Category: math
.
Summary: Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function. (English)
Keyword: Lipschitz Fréchet derivative
Keyword: d.c. functions
MSC: 26B25
MSC: 46B20
MSC: 46G05
idZBL: Zbl 1090.46012
idMR: MR1903313
.
Date available: 2009-01-08T19:20:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119306
.
Reference: [DGZ] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Longman (1993). Zbl 0782.46019, MR 1211634
Reference: [DVZ] Duda J., Veselý L., Zajíček L.: On d.c. functions and mappings.submitted to Atti Sem. Mat. Fis. Univ. Modena.
Reference: [VZ] Veselý L., Zajíček L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp. MR 1016045
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_12.pdf 194.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo