Title:
|
An example of a $\Cal C^{1,1}$ function, which is not a d.c. function (English) |
Author:
|
Zelený, Miroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
149-154 |
. |
Category:
|
math |
. |
Summary:
|
Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function. (English) |
Keyword:
|
Lipschitz Fréchet derivative |
Keyword:
|
d.c. functions |
MSC:
|
26B25 |
MSC:
|
46B20 |
MSC:
|
46G05 |
idZBL:
|
Zbl 1090.46012 |
idMR:
|
MR1903313 |
. |
Date available:
|
2009-01-08T19:20:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119306 |
. |
Reference:
|
[DGZ] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Longman (1993). Zbl 0782.46019, MR 1211634 |
Reference:
|
[DVZ] Duda J., Veselý L., Zajíček L.: On d.c. functions and mappings.submitted to Atti Sem. Mat. Fis. Univ. Modena. |
Reference:
|
[VZ] Veselý L., Zajíček L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp. MR 1016045 |
. |