Previous |  Up |  Next

Article

Title: Locally compact linearly Lindelöf spaces (English)
Author: Kunen, Kenneth
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 155-158
.
Category: math
.
Summary: There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova. (English)
Keyword: linearly Lindelöf
Keyword: weak P-point
MSC: 03C20
MSC: 54B35
MSC: 54D20
MSC: 54D80
idZBL: Zbl 1090.54019
idMR: MR1903314
.
Date available: 2009-01-08T19:20:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119307
.
Reference: [1] Arhangel'skii A.V., Buzyakova R.Z.: Convergence in compacta and linear Lindelöfness.Comment. Math. Univ. Carolinae 39 (1998), 159-166. Zbl 0937.54022, MR 1623006
Reference: [2] Baker J., Kunen K.: Limits in the uniform ultrafilters.Trans. Amer. Math. Soc. 353 (2001), 4083-4093. Zbl 0972.54019, MR 1837221
Reference: [3] Chang C.C., Keisler H.J.: Model Theory.Third Edition, North-Holland, 1990. Zbl 0697.03022, MR 1059055
Reference: [4] Dow A.: Good and OK ultrafilters.Trans. Amer. Math. Soc. 290 (1985), 145-160. Zbl 0532.54021, MR 0787959
Reference: [5] Keisler H.J.: Good ideals in fields of sets.Ann. of Math. 79 (1964), 338-359. Zbl 0137.00803, MR 0166105
Reference: [6] Keisler H.J.: Ultraproducts of finite sets.J. Symbolic Logic 32 (1967), 47-57. Zbl 0153.01702, MR 0235998
Reference: [7] Kunen K.: Ultrafilters and independent sets.Trans. Amer. Math. Soc. 172 (1972), 299-306. MR 0314619
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_13.pdf 171.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo