Previous |  Up |  Next

Article

Title: On the intrinsic geometry of a unit vector field (English)
Author: Yampolsky, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 299-317
.
Category: math
.
Summary: We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi_\omega$ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$. (English)
Keyword: Sasaki metric
Keyword: vector field
Keyword: sectional curvature
Keyword: totally geodesic submanifolds
MSC: 14E20
MSC: 20C20
MSC: 46E25
MSC: 54C40
idZBL: Zbl 1090.54013
idMR: MR1922129
.
Date available: 2009-01-08T19:22:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119321
.
Reference: [1] Aminov Yu.: The Geometry of Vector Fields.Gordon & Breach Publ., 2000. Zbl 0965.53002, MR 1749926
Reference: [2] Boeckx E., Vanhecke L.: Harmonic and minimal radial vector fields.Acta Math. Hungar. 90 (2001), 317-331. Zbl 1012.53040, MR 1910716
Reference: [3] Boeckx E., Vanhecke L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differential Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222
Reference: [4] Boeckx E., Vanhecke L.: Characteristic reflections on unit tangent sphere bundle.Houston J. Math. 23 (1997), 427-448. MR 1690045
Reference: [5] Borisenko A., Yampolsky A.: The sectional curvature of the Sasaki metric of $T_1M^n$.Ukrain. Geom. Sb. 30 (1987), 10-17 English transl.: J. Soviet Math. 51 (1990), 5 2503-2508. MR 0914771
Reference: [6] Gluck H., Ziller W.: On the volume of a unit vector field on the three-sphere.Comment. Math. Helv. 61 (1986), 177-192. Zbl 0605.53022, MR 0856085
Reference: [7] González-Dávila J.C., Vanhecke L.: Examples of minimal unit vector fields.Ann. Global Anal. Geom. 18 (2000), 385-404. MR 1795104
Reference: [8] Kowalski O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold..J. Reine Angew. Math. 250 (1971), 124-129. Zbl 0222.53044, MR 0286028
Reference: [9] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tôhoku Math. J. 10 (1958), 338-354. Zbl 0086.15003, MR 0112152
Reference: [10] Klingenberg W, Sasaki S.: Tangent sphere bundle of a $2$-sphere.Tôhoku Math. J. 27 (1975), 45-57. Zbl 0309.53036, MR 0362149
Reference: [11] Yampolsky A.: On the mean curvature of a unit vector field.Math. Publ. Debrecen, 2002, to appear. Zbl 1010.53012, MR 1882460
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_9.pdf 274.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo