Title:
|
On the intrinsic geometry of a unit vector field (English) |
Author:
|
Yampolsky, A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
299-317 |
. |
Category:
|
math |
. |
Summary:
|
We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi_\omega$ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$. (English) |
Keyword:
|
Sasaki metric |
Keyword:
|
vector field |
Keyword:
|
sectional curvature |
Keyword:
|
totally geodesic submanifolds |
MSC:
|
14E20 |
MSC:
|
20C20 |
MSC:
|
46E25 |
MSC:
|
54C40 |
idZBL:
|
Zbl 1090.54013 |
idMR:
|
MR1922129 |
. |
Date available:
|
2009-01-08T19:22:10Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119321 |
. |
Reference:
|
[1] Aminov Yu.: The Geometry of Vector Fields.Gordon & Breach Publ., 2000. Zbl 0965.53002, MR 1749926 |
Reference:
|
[2] Boeckx E., Vanhecke L.: Harmonic and minimal radial vector fields.Acta Math. Hungar. 90 (2001), 317-331. Zbl 1012.53040, MR 1910716 |
Reference:
|
[3] Boeckx E., Vanhecke L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differential Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222 |
Reference:
|
[4] Boeckx E., Vanhecke L.: Characteristic reflections on unit tangent sphere bundle.Houston J. Math. 23 (1997), 427-448. MR 1690045 |
Reference:
|
[5] Borisenko A., Yampolsky A.: The sectional curvature of the Sasaki metric of $T_1M^n$.Ukrain. Geom. Sb. 30 (1987), 10-17 English transl.: J. Soviet Math. 51 (1990), 5 2503-2508. MR 0914771 |
Reference:
|
[6] Gluck H., Ziller W.: On the volume of a unit vector field on the three-sphere.Comment. Math. Helv. 61 (1986), 177-192. Zbl 0605.53022, MR 0856085 |
Reference:
|
[7] González-Dávila J.C., Vanhecke L.: Examples of minimal unit vector fields.Ann. Global Anal. Geom. 18 (2000), 385-404. MR 1795104 |
Reference:
|
[8] Kowalski O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold..J. Reine Angew. Math. 250 (1971), 124-129. Zbl 0222.53044, MR 0286028 |
Reference:
|
[9] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tôhoku Math. J. 10 (1958), 338-354. Zbl 0086.15003, MR 0112152 |
Reference:
|
[10] Klingenberg W, Sasaki S.: Tangent sphere bundle of a $2$-sphere.Tôhoku Math. J. 27 (1975), 45-57. Zbl 0309.53036, MR 0362149 |
Reference:
|
[11] Yampolsky A.: On the mean curvature of a unit vector field.Math. Publ. Debrecen, 2002, to appear. Zbl 1010.53012, MR 1882460 |
. |