Previous |  Up |  Next

Article

Title: Tightness of compact spaces is preserved by the $t$-equivalence relation (English)
Author: Okunev, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 335-342
.
Category: math
.
Summary: We prove that if there is an open mapping from a subspace of $C_p(X)$ onto $C_p(Y)$, then $Y$ is a countable union of images of closed subspaces of finite powers of $X$ under finite-valued upper semicontinuous mappings. This allows, in particular, to prove that if $X$ and $Y$ are $t$-equivalent compact spaces, then $X$ and $Y$ have the same tightness, and that, assuming $2^{\frak t}>\frak c$, if $X$ and $Y$ are $t$-equivalent compact spaces and $X$ is sequential, then $Y$ is sequential. (English)
Keyword: function spaces
Keyword: topology of pointwise convergence
Keyword: tightness
MSC: 46E10
MSC: 54A10
MSC: 54A25
MSC: 54B05
MSC: 54B10
MSC: 54C35
MSC: 54C60
MSC: 54D20
MSC: 54D30
MSC: 54D55
idZBL: Zbl 1090.54004
idMR: MR1922131
.
Date available: 2009-01-08T19:22:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119323
.
Reference: [Arh1] Arhangel'skii A.V.: The spectrum of frequencies of a topological space and the product operation.Trudy Moskov. Mat. Obshch. 40 (1979), 171-206 Russian English translation: Trans. Moscow Math. Soc. (1981), 40 2 169-199. MR 0550259
Reference: [Arh2] Arhangel'skii A.V.: Problems in $C_p$-theory.603-615 Open Problems in Topology J. van Mill and G.M. Reed North-Holland (1990).
Reference: [Arh3] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Acad. Publ. Dordrecht (1992). MR 1485266
Reference: [vDo] van Douwen E.K.: The Integers and Topology.111-167 Handbook of Set-Theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984). Zbl 0561.54004, MR 0776622
Reference: [Eng] Engelking R.: General Topology.PWN (1977), Warszawa. Zbl 0373.54002, MR 0500780
Reference: [GH] Gul'ko S.P., Khmyleva T.E.: Compactness is not preserved by the relation of $t$-equivalence.Matematicheskie Zametki 39 6 (1986), 895-903 Russian English translation: Math. Notes 39 5-6 (1986), 484-488. MR 0855937
Reference: [Mal] Malykhin V.I.: On tightness and the Suslin number in $\exp X$ and in a product of spaces.Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 Russian English translation: Soviet Math. Dokl. (1972), 13 496-499. MR 0300241
Reference: [Ok1] Okunev O.: Weak topology of a dual space and a $t$-equivalence relation.Matematicheskie Zametki 46 1 53-59 (1989), Russian English translation: Math. Notes 46 1-2 534-536 (1989). MR 1019256
Reference: [Ok2] Okunev O.: A method for constructing examples of $M$-equivalent spaces.Topology Appl. 36 157-171 (1990), Correction Topology Appl. 49 191-192 (1993). Zbl 0779.54008, MR 1068167
Reference: [Ra] Ranchin D.: Tightness, sequentiality and closed coverings.Dokl. AN SSSR 32 (1977), 1015-1018 Russian English translation: Soviet Math. Dokl. (1977), 18 1 196-199. Zbl 0371.54010, MR 0436074
Reference: [Tk1] Tkachuk V.V.: Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number.Matematicheskie Zametki 37 3 (1985), 441-445 Russian English translation: Math. Notes, 37 3 (1985), 247-252. MR 0790433
Reference: [Tk2] Tkachuk V.V.: Some non-multiplicative properties are $l$-invariant.Comment. Math. Univ. Carolinae 38 1 (1997), 169-175. Zbl 0886.54005, MR 1455481
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_11.pdf 211.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo