Title:
|
On $D$-property of strong $\Sigma$ spaces (English) |
Author:
|
Buzyakova, Raushan Z. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
493-495 |
. |
Category:
|
math |
. |
Summary:
|
It is shown that every strong $\Sigma$ space is a $D$-space. In particular, it follows that every paracompact $\Sigma$ space is a $D$-space. (English) |
Keyword:
|
strong $\Sigma$ space |
Keyword:
|
$D$-space |
MSC:
|
54D20 |
MSC:
|
54F99 |
idZBL:
|
Zbl 1090.54018 |
idMR:
|
MR1920524 |
. |
Date available:
|
2009-01-08T19:24:13Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119338 |
. |
Reference:
|
[1] Arhangelskii A.: private communications.2001. |
Reference:
|
[2] Borges C.R., Wehrly A.C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448 |
Reference:
|
[3] Borges C.R., Wehrly A.C.: Another study of $D$-spaces.Questions Answers Gen. Topology 14:1 (1996), 73-76. Zbl 0842.54033, MR 1384056 |
Reference:
|
[4] Borges C.R., Wehrly A.C.: Correction: another study of $D$-spaces.Questions Answers Gen. Topology 16:1 (1998), 77-78. MR 1614761 |
Reference:
|
[5] DeCaux P.: Yet another property of the Sorgenfrey line.Topology Proc. 6:1 (1981), 31-43. MR 0650479 |
Reference:
|
[6] van Douwen E.K.: Simultaneous extension of continuous functions.Thesis, Free University, Amsterdam, 1975. |
Reference:
|
[7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), 371-377. Zbl 0409.54011, MR 0547605 |
Reference:
|
[8] van Douwen E.K., Lutzer D.J.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 (1997), 1237-1245. Zbl 0885.54023, MR 1396999 |
Reference:
|
[9] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[10] Fleissner W.G., Stanley A.M.: $D$-spaces.Topology Appl. 114 (2001), 261-271. Zbl 0983.54024, MR 1838325 |
. |