Previous |  Up |  Next

Article

Title: Strongly base-paracompact spaces (English)
Author: Porter, John E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 307-314
.
Category: math
.
Summary: A space $X$ is said to be {\it strongly base-paracompact\/} if there is a basis $\Cal B$ for $X$ with $|\Cal B|=w(X)$ such that every open cover of $X$ has a star-finite open refinement by members of $\Cal B$. Strongly paracompact spaces which are strongly base-paracompact are studied. Strongly base-paracompact spaces are shown have a family of functions $\Cal{F}$ with cardinality equal to the weight such that every open cover has a locally finite partition of unity subordinated to it from $\Cal F$. (English)
Keyword: base-paracompact
Keyword: strongly base-paracompact
Keyword: partition of unity
Keyword: Lindelöf spaces
MSC: 54D20
idZBL: Zbl 1099.54021
idMR: MR2026165
.
Date available: 2009-01-08T19:29:24Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119387
.
Reference: [E] Engelking R.: .General Topology Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [M] Morita K.: Normal families and dimension theory for metric spaces.Math. Ann. 128 (1954), 350-362. Zbl 0057.39001, MR 0065906, 10.1007/BF01360142
Reference: [N] Nagata J.: On imbedding theorem for non-separable metric spaces.J. Inst. Polyt. Oasaka City Univ. 8 (1957), 128-130. Zbl 0079.38802
Reference: [Ny] Nyikos P.J.: Some surprising base properties in topology II.Set-theoretic Topology Papers, Inst. Medicine and Math., Ohio University, Athens Ohio, 1975-1976 Academic Press, New York (1977), 277-305. Zbl 0397.54004, MR 0442889
Reference: [P] Ponomarev V.I.: On the invariance of strong paracompactness under open perfect mappings.Bull. Acad. Pol. Sci. Sér. Math. 10 (1962), 425-428. MR 0142107
Reference: Porter J.E.: Base-paracompact spaces.to appear in Topology Appl. Zbl 1099.54021, MR 1956610
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_9.pdf 185.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo