Title:
|
Perfect sets and collapsing continuum (English) |
Author:
|
Repický, Miroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
315-327 |
. |
Category:
|
math |
. |
Summary:
|
Under Martin's axiom, collapsing of the continuum by Sacks forcing $\Bbb S$ is characterized by the additivity of Marczewski's ideal (see [4]). We show that the same characterization holds true if $\frak d=\frak c$ proving that under this hypothesis there are no small uncountable maximal antichains in $\Bbb S$. We also construct a partition of $^\omega 2$ into $\frak c$ perfect sets which is a maximal antichain in $\Bbb S$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets. (English) |
Keyword:
|
Sacks forcing |
Keyword:
|
Marczewski's ideal |
Keyword:
|
cardinal invariants |
MSC:
|
03E17 |
MSC:
|
03E40 |
MSC:
|
03E50 |
MSC:
|
54A35 |
idZBL:
|
Zbl 1104.03045 |
idMR:
|
MR2026166 |
. |
Date available:
|
2009-01-08T19:29:28Z |
Last updated:
|
2020-02-20 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119388 |
. |
Reference:
|
[1] Balcar B., Vojtáš P.: Refining systems on Boolean algebras.in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp.45-58; MR 58 #16445. MR 0498304 |
Reference:
|
[2] Balcar B., Simon P.: Disjoint refinement.in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp.333-388. MR 0991597 |
Reference:
|
[3] Hausdorff F.: Summen von $\aleph_1$ Mengen.Fund. Math. 26 (1936), 241-255; Zbl. 014.05402. Zbl 0014.05402, 10.4064/fm-26-1-241-255 |
Reference:
|
[4] Judah H., Miller A.W., Shelah S.: Sacks forcing, Laver forcing, and Martin's axiom.Arch. Math. Logic 31 (1992), 3 145-161; MR 93e:03074. Zbl 0755.03026, MR 1147737, 10.1007/BF01269943 |
Reference:
|
[5] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057. Zbl 0819.04002, MR 1321597 |
Reference:
|
[6] Koppelberg S.: Handbook of Boolean Algebras.Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003. Zbl 0671.06001, MR 0991565 |
Reference:
|
[7] Marczewski (Szpilrajn) E.: Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles.Fund. Math. 24 (1935), 17-34; Zbl. 0010.19901. 10.4064/fm-24-1-17-34 |
Reference:
|
[8] Miller A.W.: Covering $2^ømega$ with $ømega_1$ disjoint closed sets.The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp.415-421; MR 82k:03083. MR 0591893, 10.1016/S0049-237X(08)71271-0 |
Reference:
|
[9] Newelski L.: On partitions of the real line into compact sets.J. Symbolic Logic 52 (1997), 2 353-359; MR 88k:03107. MR 0890442, 10.2307/2274384 |
Reference:
|
[10] Rosłanowski A., Shelah S.: More forcing notions imply diamond.Arch. Math. Logic 35 (1996), 5-6 299-313; MR 97j:03098. MR 1420260 |
Reference:
|
[11] Simon P.: Sacks forcing collapses $\frak c$ to $\frak b$.Comment. Math. Univ. Carolinae 34 (1993), 4 707-710; MR 94m:03084. MR 1263799 |
Reference:
|
[12] Vaughan J.E.: Small uncountable cardinals and topology.in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp.195-218. MR 1078647 |
. |